14
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Host Cell Secretory Machinery in Zika Virus Life Cycle

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The high human cost of Zika virus infections and the rapid establishment of virus circulation in novel areas, including the United States, present an urgent need for countermeasures against this emerging threat. The development of an effective vaccine against Zika virus may be problematic because of the cross reactivity of the antibodies with other flaviviruses leading to antibody-dependent enhancement of infection. Moreover, rapidly replicating positive strand RNA viruses, including Zika virus, generate large spectrum of mutant genomes (quasi species) every replication round, allowing rapid selection of variants resistant to drugs targeting virus-specific proteins. On the other hand, viruses are ultimate cellular parasites and rely on the host metabolism for every step of their life cycle, thus presenting an opportunity to manipulate host processes as an alternative approach to suppress virus replication and spread. Zika and other flaviviruses critically depend on the cellular secretory pathway, which transfers proteins and membranes from the ER through the Golgi to the plasma membrane, for virion assembly, maturation and release. In this review, we summarize the current knowledge of interactions of Zika and similar arthropod-borne flaviviruses with the cellular secretory machinery with a special emphasis on virus-specific changes of the secretory pathway. Identification of the regulatory networks and effector proteins required to accommodate the trafficking of virions, which represent a highly unusual cargo for the secretory pathway, may open an attractive and virtually untapped reservoir of alternative targets for the development of superior anti-viral drugs.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          The mechanisms of vesicle budding and fusion.

          Genetic and biochemical analyses of the secretory pathway have produced a detailed picture of the molecular mechanisms involved in selective cargo transport between organelles. This transport occurs by means of vesicular intermediates that bud from a donor compartment and fuse with an acceptor compartment. Vesicle budding and cargo selection are mediated by protein coats, while vesicle targeting and fusion depend on a machinery that includes the SNARE proteins. Precise regulation of these two aspects of vesicular transport ensures efficient cargo transfer while preserving organelle identity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites

            Summary Positive-strand RNA viruses are known to rearrange cellular membranes to facilitate viral genome replication. The biogenesis and three-dimensional organization of these membranes and the link between replication and virus assembly sites is not fully clear. Using electron microscopy, we find Dengue virus (DENV)-induced vesicles, convoluted membranes, and virus particles to be endoplasmic reticulum (ER)-derived, and we detect double-stranded RNA, a presumed marker of RNA replication, inside virus-induced vesicles. Electron tomography (ET) shows DENV-induced membrane structures to be part of one ER-derived network. Furthermore, ET reveals vesicle pores that could enable release of newly synthesized viral RNA and reveals budding of DENV particles on ER membranes directly apposed to vesicle pores. Thus, DENV modifies ER membrane structure to promote replication and efficient encapsidation of the genome into progeny virus. This architecture of DENV replication and assembly sites could explain the coordination of distinct steps of the flavivirus replication cycle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization.

              Viruses represent an attractive system with which to study the molecular basis of mRNA capping and its relation to the RNA transcription machinery. The RNA-dependent RNA polymerase NS5 of flaviviruses presents a characteristic motif of S-adenosyl-L-methionine-dependent methyltransferases at its N-terminus, and polymerase motifs at its C-terminus. The crystal structure of an N-terminal fragment of Dengue virus type 2 NS5 is reported at 2.4 A resolution. We show that this NS5 domain includes a typical methyltransferase core and exhibits a (nucleoside-2'-O-)-methyltransferase activity on capped RNA. The structure of a ternary complex comprising S-adenosyl-L-homocysteine and a guanosine triphosphate (GTP) analogue shows that 54 amino acids N-terminal to the core provide a novel GTP-binding site that selects guanine using a previously unreported mechanism. Binding studies using GTP- and RNA cap-analogues, as well as the spatial arrangement of the methyltransferase active site relative to the GTP-binding site, suggest that the latter is a specific cap-binding site. As RNA capping is an essential viral function, these results provide a structural basis for the rational design of drugs against the emerging flaviviruses.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                15 October 2018
                October 2018
                : 10
                : 10
                : 559
                Affiliations
                [1 ]Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; gsager56@ 123456uab.edu
                [2 ]Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; samuelgv@ 123456terpmail.umd.edu
                Author notes
                [* ]Correspondence: esztul@ 123456uab.edu (E.S.); gbelov@ 123456umd.edu (G.A.B.)
                Author information
                https://orcid.org/0000-0002-0892-1731
                Article
                viruses-10-00559
                10.3390/v10100559
                6213159
                30326556
                cb9a5669-ba86-4407-888b-5ff2cc61274f
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 September 2018
                : 12 October 2018
                Categories
                Review

                Microbiology & Virology
                zika virus,flaviviruses,virion maturation,secretory pathway,membrane trafficking

                Comments

                Comment on this article