35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cryptosporidium rubeyi n. sp. (Apicomplexa: Cryptosporidiidae) in multiple Spermophilus ground squirrel species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previously we reported the unique Cryptosporidium sp. “c” genotype (e.g., Sbey03c, Sbey05c, Sbld05c, Sltl05c) from three species of Spermophilus ground squirrel ( Spermophilus beecheyi, Spermophilus beldingi, Spermophilus lateralis) located throughout California, USA. This follow-up work characterizes the morphology and animal infectivity of this novel genotype as the final step in proposing it as a new species of Cryptosporidium. Analysis of sequences of 18S rRNA, actin, and HSP70 genes of additional Cryptosporidium isolates from recently sampled California ground squirrels ( S. beecheyi) confirms the presence of the unique Sbey-c genotype in S. beecheyi. Phylogenetic and BLAST analysis indicates that the c-genotype in Spermophilus ground squirrels is distinct from Cryptosporidium species/genotypes from other host species currently available in GenBank. We propose to name this c-genotype found in Spermophilus ground squirrels as Cryptosporidium rubeyi n. sp. The mean size of C. rubeyi n. sp. oocysts is 4.67 (4.4–5.0) μm × 4.34 (4.0–5.0) μm, with a length/width index of 1.08 (n = 220). Oocysts of C. rubeyi n. sp. are not infectious to neonatal BALB/c mice and Holstein calves. GenBank accession numbers for C. rubeyi n. sp. are DQ295012, AY462233, and KM010224 for the 18S rRNA gene, KM010227 for the actin gene, and KM010229 for the HSP70 gene.

          Graphical abstract

          Highlights

          • Cryptosporidium rubeyi is a newly described species of Cryptosporidium.

          • C. rubeyi is isolated from Spermophilus ground squirrels from California, USA.

          • C. rubeyi demonstrates host specificity given it is not infectious for mice or calves.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium.

          Cryptosporidium spp are well recognised as causes of diarrhoeal disease during waterborne epidemics and in immunocompromised hosts. Studies have also drawn attention to an underestimated global burden and suggest major gaps in optimum diagnosis, treatment, and immunisation. Cryptosporidiosis is increasingly identified as an important cause of morbidity and mortality worldwide. Studies in low-resource settings and high-income countries have confirmed the importance of cryptosporidium as a cause of diarrhoea and childhood malnutrition. Diagnostic tests for cryptosporidium infection are suboptimum, necessitating specialised tests that are often insensitive. Antigen-detection and PCR improve sensitivity, and multiplexed antigen detection and molecular assays are underused. Therapy has some effect in healthy hosts and no proven efficacy in patients with AIDS. Use of cryptosporidium genomes has helped to identify promising therapeutic targets, and drugs are in development, but methods to assess the efficacy in vitro and in animals are not well standardised. Partial immunity after exposure suggests the potential for successful vaccines, and several are in development; however, surrogates of protection are not well defined. Improved methods for propagation and genetic manipulation of the organism would be significant advances. Copyright © 2015 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiology of Cryptosporidium: transmission, detection and identification.

            There are 10 valid species of Cryptosporidium and perhaps other cryptic species hidden under the umbrella of Cryptosporidium parvum. The oocyst stage is of primary importance for the dispersal, survival, and infectivity of the parasite and is of major importance for detection and identification. Because most oocysts measure 4-6 microm, appear nearly spherical, and have obscure internal structures, there are few or no morphometric features to differentiate species and in vitro cultivation does not provide differential data as for bacteria. Consequently, we rely on a combination of data from three tools: morphometrics, molecular techniques, and host specificity. Of 152 species of mammals reported to be infected with C. parvum or an indistinguishable organism, very few oocysts have ever been examined using more than one of these tools. This paper reviews the valid species of Cryptosporidium, their hosts and morphometrics; the reported hosts for the human pathogen, C. parvum; the mechanisms of transmission; the drinking water, recreational water, and food-borne outbreaks resulting from infection with C. parvum; and the microscopic, immunological, and molecular methods used to detect and identify species and genotypes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Taxonomy and species delimitation in Cryptosporidium.

              Amphibians, reptiles, birds and mammals serve as hosts for 19 species of Cryptosporidium. All 19 species have been confirmed by morphological, biological, and molecular data. Fish serve as hosts for three additional species, all of which lack supporting molecular data. In addition to the named species, gene sequence data from more than 40 isolates from various vertebrate hosts are reported in the scientific literature or are listed in GenBank. These isolates lack taxonomic status and are referred to as genotypes based on the host of origin. Undoubtedly, some will eventually be recognized as species. For them to receive taxonomic status sufficient morphological, biological, and molecular data are required and names must comply with the rules of the International Code for Zoological Nomenclature (ICZN). Because the ICZN rules may be interpreted differently by persons proposing names, original names might be improperly assigned, original literature might be overlooked, or new scientific methods might be applicable to determining taxonomic status, the names of species and higher taxa are not immutable. The rapidly evolving taxonomic status of Cryptosporidium sp. reflects these considerations. Published by Elsevier Inc.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Parasitol Parasites Wildl
                Int J Parasitol Parasites Wildl
                International Journal for Parasitology: Parasites and Wildlife
                Elsevier
                2213-2244
                24 August 2015
                December 2015
                24 August 2015
                : 4
                : 3
                : 343-350
                Affiliations
                [a ]Department of Population Health and Reproduction, School of Veterinary Medicine, USA
                [b ]Western Institute for Food Safety and Security, University of California, Davis 95616, USA
                [c ]University of California Cooperative Extension, San Luis Obispo County, CA 93401, USA
                [d ]University of California Cooperative Extension, Kern County, CA 93307, USA
                Author notes
                []Corresponding author. School of Veterinary Medicine, University of California, 4207 Vet Med 3B, Davis, CA 95616, USA. ratwill@ 123456ucdavis.edu
                Article
                S2213-2244(15)30011-0
                10.1016/j.ijppaw.2015.08.005
                4589830
                cb8e0776-b4a5-462d-b289-594fb9f82711
                © 2015 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 April 2015
                : 1 July 2015
                : 19 August 2015
                Categories
                Article

                cryptosporidium,spermophilus,s. beecheyi,ground squirrels,genotypes,protozoa

                Comments

                Comment on this article