4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HDXmodeller: an online webserver for high-resolution HDX-MS with auto-validation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The extent to which proteins are protected from hydrogen deuterium exchange (HDX) provides valuable insight into their folding, dynamics and interactions. Characterised by mass spectrometry (MS), HDX benefits from negligible mass restrictions and exceptional throughput and sensitivity but at the expense of resolution. Exchange mechanisms which naturally transpire for individual residues cannot be accurately located or understood because amino acids are characterised in differently sized groups depending on the extent of proteolytic digestion. Here we report HDXmodeller, the world’s first online webserver for high-resolution HDX-MS. HDXmodeller accepts low-resolution HDX-MS input data and returns high-resolution exchange rates quantified for each residue. Crucially, HDXmodeller also returns a set of unique statistics that can correctly validate exchange rate models to an accuracy of 99%. Remarkably, these statistics are derived without any prior knowledge of the individual exchange rates and facilitate unparallel user confidence and the capacity to evaluate different data optimisation strategies.

          Abstract

          Salmas and Borysik develop HDXmodeller, an online webserver for high-resolution HDX-MS analysis. Their method returns high-resolution exchange rates quantified per residue as well as statistics that validate the exchange rate models with high accuracy. Their method will be very useful for users as it facilitates the evaluation of different data optimisations with high confidence.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments

          Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation.

            A new method based on protein fragmentation and directly coupled microbore high-performance liquid chromatography-fast atom bombardment mass spectrometry (HPLC-FABMS) is described for determining the rates at which peptide amide hydrogens in proteins undergo isotopic exchange. Horse heart cytochrome c was incubated in D2O as a function of time and temperature to effect isotopic exchange, transferred into slow exchange conditions (pH 2-3, 0 degrees C), and fragmented with pepsin. The number of peptide amide deuterons present in the proteolytic peptides was deduced from their molecular weights, which were determined following analysis of the digest by HPLC-FABMS. The present results demonstrate that the exchange rates of amide hydrogens in cytochrome c range from very rapid (k > 140 h-1) to very slow (k < 0.002 h-1). The deuterium content of specific segments of the protein was determined as a function of incubation temperature and used to indicate participation of these segments in conformational changes associated with heating of cytochrome c. For the present HPLC-FABMS system, approximately 5 nmol of protein were used for each determination. Results of this investigation indicate that the combination of protein fragmentation and HPLC-FABMS is relatively free of constraints associated with other analytical methods used for this purpose and may be a general method for determining hydrogen exchange rates in specific segments of proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Post-translational modifications differentially affect IgG1 conformation and receptor binding.

              Post-translational modifications (PTMs) can have profound effects on protein structure and protein dynamics and thereby can influence protein function. To understand and connect PTM-induced functional differences with any resulting conformational changes, the conformational changes must be detected and localized to specific parts of the protein. We illustrate these principles here with a study of the functional and conformational changes that accompany modifications to a monoclonal immunoglobulin gamma1 (IgG1) antibody. IgG1s are large and heterogeneous proteins capable of incorporating a multiplicity of PTMs both in vivo and in vitro. For many IgG1s, these PTMs can play a critical role in affecting conformation, biological function, and the ability of the antibody to initiate a potential adverse biological response. We investigated the impact of differential galactosylation, methionine oxidation, and fucosylation on solution conformation using hydrogen/deuterium exchange mass spectrometry and probed the effects of IgG1 binding to the FcgammaRIIIa receptor. The results showed that methionine oxidation and galactosylation both impact IgG1 conformation, whereas fucosylation appears to have little or no impact to the conformation. FcgammaRIIIa binding was strongly influenced by both the glycan structure/composition (namely galactose and fucose) and conformational changes that were induced by some of the modifications.
                Bookmark

                Author and article information

                Contributors
                antoni.borysik@kcl.ac.uk
                Journal
                Commun Biol
                Commun Biol
                Communications Biology
                Nature Publishing Group UK (London )
                2399-3642
                15 February 2021
                15 February 2021
                2021
                : 4
                : 199
                Affiliations
                GRID grid.13097.3c, ISNI 0000 0001 2322 6764, Department of Chemistry, Britannia House, , King’s College London, ; SE1 1DB London, UK
                Article
                1709
                10.1038/s42003-021-01709-x
                7884430
                33589746
                cb554057-67ad-4504-8e06-0c4deb975fc1
                © Crown 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 20 February 2020
                : 29 December 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100000268, RCUK | Biotechnology and Biological Sciences Research Council (BBSRC);
                Award ID: BB/R006792/1
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                software,computational biology and bioinformatics,biophysics

                Comments

                Comment on this article