8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A probabilistic hesitant fuzzy MCDM approach to evaluate India’s intervention strategies against the COVID-19 pandemic

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          Fuzzy sets

          L.A. Zadeh (1965)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application

            Background: A novel human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in China in December 2019. There is limited support for many of its key epidemiologic features, including the incubation period for clinical disease (coronavirus disease 2019 [COVID-19]), which has important implications for surveillance and control activities. Objective: To estimate the length of the incubation period of COVID-19 and describe its public health implications. Design: Pooled analysis of confirmed COVID-19 cases reported between 4 January 2020 and 24 February 2020. Setting: News reports and press releases from 50 provinces, regions, and countries outside Wuhan, Hubei province, China. Participants: Persons with confirmed SARS-CoV-2 infection outside Hubei province, China. Measurements: Patient demographic characteristics and dates and times of possible exposure, symptom onset, fever onset, and hospitalization. Results: There were 181 confirmed cases with identifiable exposure and symptom onset windows to estimate the incubation period of COVID-19. The median incubation period was estimated to be 5.1 days (95% CI, 4.5 to 5.8 days), and 97.5% of those who develop symptoms will do so within 11.5 days (CI, 8.2 to 15.6 days) of infection. These estimates imply that, under conservative assumptions, 101 out of every 10 000 cases (99th percentile, 482) will develop symptoms after 14 days of active monitoring or quarantine. Limitation: Publicly reported cases may overrepresent severe cases, the incubation period for which may differ from that of mild cases. Conclusion: This work provides additional evidence for a median incubation period for COVID-19 of approximately 5 days, similar to SARS. Our results support current proposals for the length of quarantine or active monitoring of persons potentially exposed to SARS-CoV-2, although longer monitoring periods might be justified in extreme cases. Primary Funding Source: U.S. Centers for Disease Control and Prevention, National Institute of Allergy and Infectious Diseases, National Institute of General Medical Sciences, and Alexander von Humboldt Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak

              Public health measures were decisive in controlling the SARS epidemic in 2003. Isolation is the separation of ill persons from non-infected persons. Quarantine is movement restriction, often with fever surveillance, of contacts when it is not evident whether they have been infected but are not yet symptomatic or have not been infected. Community containment includes measures that range from increasing social distancing to community-wide quarantine. Whether these measures will be sufficient to control 2019-nCoV depends on addressing some unanswered questions.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Socio-Economic Planning Sciences
                Socio-Economic Planning Sciences
                Elsevier BV
                00380121
                October 2023
                October 2023
                : 89
                : 101711
                Article
                10.1016/j.seps.2023.101711
                cb4cc245-38aa-4425-ae76-68d27241476d
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article