2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Advances in green bioproduction of marine and glycosaminoglycan oligosaccharides

      , , ,
      Carbohydrate Polymers
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The carbohydrate-active enzyme database: functions and literature

          Thirty years have elapsed since the emergence of the classification of carbohydrate-active enzymes in sequence-based families that became the CAZy database over 20 years ago, freely available for browsing and download at  www.cazy.org . In the era of large scale sequencing and high-throughput Biology, it is important to examine the position of this specialist database that is deeply rooted in human curation. The three primary tasks of the CAZy curators are (i) to maintain and update the family classification of this class of enzymes, (ii) to classify sequences newly released by GenBank and the Protein Data Bank and (iii) to capture and present functional information for each family. The CAZy website is updated once a month. Here we briefly summarize the increase in novel families and the annotations conducted during the last 8 years. We present several important changes that facilitate taxonomic navigation, and allow to download the entirety of the annotations. Most importantly we highlight the considerable amount of work that accompanies the analysis and report of biochemical data from the literature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression

            Recently, increasing evidence has suggested the association between gut dysbiosis and Alzheimer’s disease (AD) progression, yet the role of gut microbiota in AD pathogenesis remains obscure. Herein, we provide a potential mechanistic link between gut microbiota dysbiosis and neuroinflammation in AD progression. Using AD mouse models, we discovered that, during AD progression, the alteration of gut microbiota composition leads to the peripheral accumulation of phenylalanine and isoleucine, which stimulates the differentiation and proliferation of pro-inflammatory T helper 1 (Th1) cells. The brain-infiltrated peripheral Th1 immune cells are associated with the M1 microglia activation, contributing to AD-associated neuroinflammation. Importantly, the elevation of phenylalanine and isoleucine concentrations and the increase of Th1 cell frequency in the blood were also observed in two small independent cohorts of patients with mild cognitive impairment (MCI) due to AD. Furthermore, GV-971, a sodium oligomannate that has demonstrated solid and consistent cognition improvement in a phase 3 clinical trial in China, suppresses gut dysbiosis and the associated phenylalanine/isoleucine accumulation, harnesses neuroinflammation and reverses the cognition impairment. Together, our findings highlight the role of gut dysbiosis-promoted neuroinflammation in AD progression and suggest a novel strategy for AD therapy by remodelling the gut microbiota.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The gut microbiota at the intersection of diet and human health

              Diet affects multiple facets of human health and is inextricably linked to chronic metabolic conditions such as obesity, type 2 diabetes, and cardiovascular disease. Dietary nutrients are essential not only for human health but also for the health and survival of the trillions of microbes that reside within the human intestines. Diet is a key component of the relationship between humans and their microbial residents; gut microbes use ingested nutrients for fundamental biological processes, and the metabolic outputs of those processes may have important impacts on human physiology. Studies in humans and animal models are beginning to unravel the underpinnings of this relationship, and increasing evidence suggests that it may underlie some of the broader effects of diet on human health and disease.
                Bookmark

                Author and article information

                Journal
                Carbohydrate Polymers
                Carbohydrate Polymers
                Elsevier BV
                01448617
                January 2023
                January 2023
                : 300
                : 120254
                Article
                10.1016/j.carbpol.2022.120254
                cb283f46-e60c-452e-8b4f-e427d40f277c
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article