10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Deep-learning seismology

      1 , 2 , 1
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Seismic waves from earthquakes and other sources are used to infer the structure and properties of Earth’s interior. The availability of large-scale seismic datasets and the suitability of deep-learning techniques for seismic data processing have pushed deep learning to the forefront of fundamental, long-standing research investigations in seismology. However, some aspects of applying deep learning to seismology are likely to prove instructive for the geosciences, and perhaps other research areas more broadly. Deep learning is a powerful approach, but there are subtleties and nuances in its application. We present a systematic overview of trends, challenges, and opportunities in applications of deep-learning methods in seismology.

          Large-scale learning

          The large amount and availability of datasets in seismology creates a great opportunity to apply machine learning and artificial intelligence to data processing. Mousavi and Beroza provide a comprehensive review of the deep-learning techniques being applied to seismic datasets, covering approaches, limitations, and opportunities. The trends in data processing and analysis can be instructive for geoscience and other research areas more broadly. —BG

          Abstract

          The ways in which deep learning can help process and analyze large seismological datasets are reviewed.

          Abstract

          BACKGROUND

          Seismology is the study of seismic waves to understand their origin—most obviously, sudden fault slip in earthquakes, but also explosions, volcanic eruptions, glaciers, landslides, ocean waves, vehicular traffic, aircraft, trains, wind, air guns, and thunderstorms, for example. Seismology uses those same waves to infer the structure and properties of planetary interiors. Because sources can generate waves at any time, seismic ground motion is recorded continuously, at typical sampling rates of 100 points per second, for three components of motion, and on arrays that can include thousands of sensors. Although seismology is clearly a data-rich science, it often is a data-driven science as well, with new phenomena and unexpected behavior discovered with regularity. And for at least some tasks, the careful and painstaking work of seismic analysts over decades and around the world has also made seismology a data label–rich science. This facet makes it fertile ground for deep learning, which has entered almost every subfield of seismology and outperforms classical approaches, often dramatically, for many seismological tasks.

          ADVANCES

          Seismic wave identification and onset-time, first-break determination for seismic P and S waves within continuous seismic data are foundational to seismology and are particularly well suited to deep learning because of the availability of massive, labeled datasets. It has received particularly close attention, and that has led, for example, to the development of deep learning–based earthquake catalogs that can feature more than an order of magnitude more events than are present in conventional catalogs. Deep learning has shown the ability to outperform classical approaches for other important seismological tasks as well, including the discrimination of earthquakes from explosions and other sources, separation of seismic signals from background noise, seismic image processing and interpretation, and Earth model inversion.

          OUTLOOK

          The development of increasingly cost-effective sensors and emerging ground-motion sensing technologies, such as fiber optic cable and accelerometers in smart devices, portend a continuing acceleration of seismological data volumes, so that deep learning is likely to become essential to seismology’s future. Deep learning’s nonlinear mapping ability, sequential data modeling, automatic feature extraction, dimensionality reduction, and reparameterization are all advantageous for processing high-dimensional seismic data, particularly because those data are noisy and, from the point of view of mathematical inference, incomplete. Deep learning for scientific discovery and direct extraction of insight into seismological processes is clearly just getting started.

          Aspects of seismology pose interesting additional challenges for deep learning. Many of the most important problems in earthquake seismology—such as earthquake forecasting, ground motion prediction, and rapid earthquake alerting—concern large and damaging earthquakes that are (fortunately) rare. That rarity poses a fundamental challenge for the data-hungry methods of deep learning: How can we train reliable models, and how do we validate them well enough to rely on them when data are scarce and opportunities to test models are infrequent? Further, how can we operationalize deep-learning techniques in such a situation, when the mechanisms by which they make predictions from data may not be easily explained, and the consequences of incorrect models are high? Incorporating domain knowledge through physics-based and explainable deep learning and setting up standard benchmarking and evaluation protocols will help ensure progress, as is the nascent emergence of a seismological data science ecosystem. More generally, a combination of data science literacy for geoscientists as well as recruiting data science expertise will help to ensure that deep-learning seismology reaches its full potential.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles

            Polycyclic aromatic compounds (PACs) are known due to their mutagenic activity. Among them, 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA) are considered as two of the most potent mutagens found in atmospheric particles. In the present study 2-NBA, 3-NBA and selected PAHs and Nitro-PAHs were determined in fine particle samples (PM 2.5) collected in a bus station and an outdoor site. The fuel used by buses was a diesel-biodiesel (96:4) blend and light-duty vehicles run with any ethanol-to-gasoline proportion. The concentrations of 2-NBA and 3-NBA were, on average, under 14.8 µg g−1 and 4.39 µg g−1, respectively. In order to access the main sources and formation routes of these compounds, we performed ternary correlations and multivariate statistical analyses. The main sources for the studied compounds in the bus station were diesel/biodiesel exhaust followed by floor resuspension. In the coastal site, vehicular emission, photochemical formation and wood combustion were the main sources for 2-NBA and 3-NBA as well as the other PACs. Incremental lifetime cancer risk (ILCR) were calculated for both places, which presented low values, showing low cancer risk incidence although the ILCR values for the bus station were around 2.5 times higher than the ILCR from the coastal site.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              U1 snRNP regulates cancer cell migration and invasion in vitro

              Stimulated cells and cancer cells have widespread shortening of mRNA 3’-untranslated regions (3’UTRs) and switches to shorter mRNA isoforms due to usage of more proximal polyadenylation signals (PASs) in introns and last exons. U1 snRNP (U1), vertebrates’ most abundant non-coding (spliceosomal) small nuclear RNA, silences proximal PASs and its inhibition with antisense morpholino oligonucleotides (U1 AMO) triggers widespread premature transcription termination and mRNA shortening. Here we show that low U1 AMO doses increase cancer cells’ migration and invasion in vitro by up to 500%, whereas U1 over-expression has the opposite effect. In addition to 3’UTR length, numerous transcriptome changes that could contribute to this phenotype are observed, including alternative splicing, and mRNA expression levels of proto-oncogenes and tumor suppressors. These findings reveal an unexpected role for U1 homeostasis (available U1 relative to transcription) in oncogenic and activated cell states, and suggest U1 as a potential target for their modulation.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                August 12 2022
                August 12 2022
                : 377
                : 6607
                Affiliations
                [1 ]Department of Geophysics, Stanford University, Stanford, CA 94305, USA.
                [2 ]Google, Mountain View, CA 94043, USA.
                Article
                10.1126/science.abm4470
                35951699
                cb0a5625-f6a2-4d98-ac25-93814e35d580
                © 2022
                History

                Comments

                Comment on this article