20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lipid Nanoparticle Systems for Enabling Gene Therapies

      ,
      Molecular Therapy
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic drugs such as small interfering RNA (siRNA), mRNA, or plasmid DNA provide potential gene therapies to treat most diseases by silencing pathological genes, expressing therapeutic proteins, or through gene-editing applications. In order for genetic drugs to be used clinically, however, sophisticated delivery systems are required. Lipid nanoparticle (LNP) systems are currently the lead non-viral delivery systems for enabling the clinical potential of genetic drugs. Application will be made to the Food and Drug Administration (FDA) in 2017 for approval of an LNP siRNA drug to treat transthyretin-induced amyloidosis, presently an untreatable disease. Here, we first review research leading to the development of LNP siRNA systems capable of silencing target genes in hepatocytes following systemic administration. Subsequently, progress made to extend LNP technology to mRNA and plasmids for protein replacement, vaccine, and gene-editing applications is summarized. Finally, we address current limitations of LNP technology as applied to genetic drugs and ways in which such limitations may be overcome. It is concluded that LNP technology, by virtue of robust and efficient formulation processes, as well as advantages in potency, payload, and design flexibility, will be a dominant non-viral technology to enable the enormous potential of gene therapy.

          Related collections

          Author and article information

          Journal
          Molecular Therapy
          Molecular Therapy
          Elsevier BV
          15250016
          July 2017
          July 2017
          : 25
          : 7
          : 1467-1475
          Article
          10.1016/j.ymthe.2017.03.013
          5498813
          28412170
          caf8903c-7510-4d23-b9e0-3190a8c46b0a
          © 2017

          https://www.elsevier.com/tdm/userlicense/1.0/

          http://creativecommons.org/licenses/by-nc-nd/4.0/

          History

          Comments

          Comment on this article