22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Understanding mobility in a social petri dish

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite the recent availability of large data sets on human movements, a full understanding of the rules governing motion within social systems is still missing, due to incomplete information on the socio-economic factors and to often limited spatio-temporal resolutions. Here we study an entire society of individuals, the players of an online-game, with complete information on their movements in a network-shaped universe and on their social and economic interactions. Such a "socio-economic laboratory" allows to unveil the intricate interplay of spatial constraints, social and economic factors, and patterns of mobility. We find that the motion of individuals is not only constrained by physical distances, but also strongly shaped by the presence of socio-economic areas. These regions can be recovered perfectly by community detection methods solely based on the measured human dynamics. Moreover, we uncover that long-term memory in the time-order of visited locations is the essential ingredient for modeling the trajectories.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Community detection in graphs

          The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Epidemic spreading in scale-free networks

            The Internet, as well as many other networks, has a very complex connectivity recently modeled by the class of scale-free networks. This feature, which appears to be very efficient for a communications network, favors at the same time the spreading of computer viruses. We analyze real data from computer virus infections and find the average lifetime and prevalence of viral strains on the Internet. We define a dynamical model for the spreading of infections on scale-free networks, finding the absence of an epidemic threshold and its associated critical behavior. This new epidemiological framework rationalize data of computer viruses and could help in the understanding of other spreading phenomena on communication and social networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Understanding individual human mobility patterns

              Despite their importance for urban planning, traffic forecasting, and the spread of biological and mobile viruses, our understanding of the basic laws governing human motion remains limited thanks to the lack of tools to monitor the time resolved location of individuals. Here we study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six month period. We find that in contrast with the random trajectories predicted by the prevailing Levy flight and random walk models, human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time independent characteristic length scale and a significant probability to return to a few highly frequented locations. After correcting for differences in travel distances and the inherent anisotropy of each trajectory, the individual travel patterns collapse into a single spatial probability distribution, indicating that despite the diversity of their travel history, humans follow simple reproducible patterns. This inherent similarity in travel patterns could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning and agent based modeling.
                Bookmark

                Author and article information

                Journal
                2011-12-06
                Article
                10.1038/srep00457
                1112.1220
                cae544b1-0933-467c-86e3-da536d9bd869

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Scientific Reports 2, 457 (2012)
                8 pages, 5 figures
                physics.soc-ph cs.SI

                Social & Information networks,General physics
                Social & Information networks, General physics

                Comments

                Comment on this article