52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beyond cell replacement: unresolved roles of NG2-expressing progenitors

      research-article
      ,
      Frontiers in Neuroscience
      Frontiers Media S.A.
      buffering, depolarization, myelin, neuroprotection, neuromodulation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NG2-expressing parenchymal precursors (NG2+p) serve as primary source of myelinating oligodendrocytes in both the developing and adult Central Nervous System (CNS). However, their abundance, limited differentiation potential at adult stages along with stereotypic reaction to injury independent of the extent of myelin loss suggest that NG2+p exert functions additional to myelin production. In support of this view, NG2+p express a complex battery of molecules known to exert neuromodulatory and neuroprotective functions. Further, they establish intimate physical associations with the other CNS cell types, receive functional synaptic contacts and possess ion channels apt to constantly sense the electrical activity of surrounding neurons. These latter features could endow NG2+p with the capability to affect neuronal functions with potential homeostatic outcomes. Here we summarize and discuss current evidence favoring the view that NG2+p can participate in circuit formation, modulate neuronal activity and survival in the healthy and injured CNS, and propose perspectives for studies that may complete our understanding of NG2+p roles in physiology and pathology.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis.

          The establishment of neural circuitry requires vast numbers of synapses to be generated during a specific window of brain development, but it is not known why the developing mammalian brain has a much greater capacity to generate new synapses than the adult brain. Here we report that immature but not mature astrocytes express thrombospondins (TSPs)-1 and -2 and that these TSPs promote CNS synaptogenesis in vitro and in vivo. TSPs induce ultrastructurally normal synapses that are presynaptically active but postsynaptically silent and work in concert with other, as yet unidentified, astrocyte-derived signals to produce functional synapses. These studies identify TSPs as CNS synaptogenic proteins, provide evidence that astrocytes are important contributors to synaptogenesis within the developing CNS, and suggest that TSP-1 and -2 act as a permissive switch that times CNS synaptogenesis by enabling neuronal molecules to assemble into synapses within a specific window of CNS development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS.

            M. Dawson (2003)
            Glial progenitor cells of the developing CNS committed to the oligodendrocyte lineage (OPCs) express the chondroitin sulfate proteoglycan, NG2. A proportion of OPCs fail to differentiate past the stage at which they express NG2 and the lipid antigen O4 and persist in the adult CNS in a phenotypically immature form. However, the physiological function of NG2(+) cells in the adult CNS is unknown. Using antibodies against NG2 we show that NG2 is expressed by a distinct cell population in the mature CNS with the homogeneous antigenic phenotype of oligodendrocyte progenitors. The morphology of NG2(+) OPCs varies from region to region, reflecting the different structural environments, but they appear to represent a homogeneous population within any one gray or white matter region. A study of nine CNS regions showed that NG2(+) OPCs are numerous throughout the CNS and numbers in the white matter are only 1.5 times that in the gray. Whereas the ratio of OPCs to myelinating oligodendrocytes in the spinal cord gray and white matter approximates 1:4, gray matter regions of the forebrain have a 1:1 ratio, a phenomenon that will have consequences for oligodendrocyte replacement following demyelination. BrdU incorporation experiments showed that NG2(+) cells are the major dividing cell population of the adult rat CNS. Since very little apoptosis was detected and BrdU became increasingly present in oligodendrocytes after a 10-day pulse chase, with a concomitant decrease in NG2(+) BrdU incorporating cells, we suggest that the size of the oligodendrocyte population may actually increase during adult life.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus.

              Fast excitatory neurotransmission in the central nervous system occurs at specialized synaptic junctions between neurons, where a high concentration of glutamate directly activates receptor channels. Low-affinity AMPA (alpha-amino-3-hydroxy-5-methyl isoxazole propionic acid) and kainate glutamate receptors are also expressed by some glial cells, including oligodendrocyte precursor cells (OPCs). However, the conditions that result in activation of glutamate receptors on these non-neuronal cells are not known. Here we report that stimulation of excitatory axons in the hippocampus elicits inward currents in OPCs that are mediated by AMPA receptors. The quantal nature of these responses and their rapid kinetics indicate that they are produced by the exocytosis of vesicles filled with glutamate directly opposite these receptors. Some of these AMPA receptors are permeable to calcium ions, providing a link between axonal activity and internal calcium levels in OPCs. Electron microscopic analysis revealed that vesicle-filled axon terminals make synaptic junctions with the processes of OPCs in both the young and adult hippocampus. These results demonstrate the existence of a rapid signalling pathway from pyramidal neurons to OPCs in the mammalian hippocampus that is mediated by excitatory, glutamatergic synapses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                23 May 2014
                2014
                : 8
                : 122
                Affiliations
                Department of Neuroscience Rita Levi-Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin Turin, Italy
                Author notes

                Edited by: Luca Bonfanti, University of Turin, Italy

                Reviewed by: Hans Georg Kuhn, University of Gothenburg, Sweden; Akiko Nishiyama, University of Connecticut, USA

                *Correspondence: Enrica Boda, Department of Neuroscience Rita Levi-Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Regione Gonzole 10, Orbassano 10043 (Turin), Italy e-mail: enrica.boda@ 123456unito.it

                This article was submitted Neurogenesis, a section of the journal Frontiers in Neuroscience.

                Article
                10.3389/fnins.2014.00122
                4033196
                cad86c59-ab3a-4f6b-a3c4-c5d39bcecd96
                Copyright © 2014 Boda and Buffo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 March 2014
                : 06 May 2014
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 91, Pages: 7, Words: 6265
                Categories
                Neuroscience
                Perspective Article

                Neurosciences
                buffering,depolarization,myelin,neuroprotection,neuromodulation
                Neurosciences
                buffering, depolarization, myelin, neuroprotection, neuromodulation

                Comments

                Comment on this article