0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analytic validation and clinical utilization of the comprehensive genomic profiling test, GEM ExTra ®

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We developed and analytically validated a comprehensive genomic profiling (CGP) assay, GEM ExTra, for patients with advanced solid tumors that uses Next Generation Sequencing (NGS) to characterize whole exomes employing a paired tumor-normal subtraction methodology. The assay detects single nucleotide variants (SNV), indels, focal copy number alterations (CNA), TERT promoter region, as well as tumor mutation burden (TMB) and microsatellite instability (MSI) status. Additionally, the assay incorporates whole transcriptome sequencing of the tumor sample that allows for the detection of gene fusions and select special transcripts, including AR-V7, EGFR vIII, EGFRvIV, and MET exon 14 skipping events. The assay has a mean target coverage of 180X for the normal (germline) and 400X for tumor DNA including enhanced probe design to facilitate the sequencing of difficult regions. Proprietary bioinformatics, paired with comprehensive clinical curation results in reporting that defines clinically actionable, FDA-approved, and clinical trial drug options for the management of the patient’s cancer. GEM ExTra demonstrated analytic specificity (PPV) of > 99.9% and analytic sensitivity of 98.8%. Application of GEM ExTra to 1,435 patient samples revealed clinically actionable alterations in 83.9% of reports, including 31 (2.5%) where therapeutic recommendations were based on RNA fusion findings only.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Statistics, 2021

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The Cancer Genome Atlas Pan-Cancer analysis project.

            The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration

              Data visualization is an essential component of genomic data analysis. However, the size and diversity of the data sets produced by today’s sequencing and array-based profiling methods present major challenges to visualization tools. The Integrative Genomics Viewer (IGV) is a high-performance viewer that efficiently handles large heterogeneous data sets, while providing a smooth and intuitive user experience at all levels of genome resolution. A key characteristic of IGV is its focus on the integrative nature of genomic studies, with support for both array-based and next-generation sequencing data, and the integration of clinical and phenotypic data. Although IGV is often used to view genomic data from public sources, its primary emphasis is to support researchers who wish to visualize and explore their own data sets or those from colleagues. To that end, IGV supports flexible loading of local and remote data sets, and is optimized to provide high-performance data visualization and exploration on standard desktop systems. IGV is freely available for download from http://www.broadinstitute.org/igv, under a GNU LGPL open-source license.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Impact Journals LLC
                Oncotarget
                Impact Journals LLC
                1949-2553
                13 April 2021
                13 April 2021
                : 12
                : 8
                : 726-739
                Affiliations
                1Ashion Analytics, LLC, Phoenix, Arizona 85004, USA
                *These authors contributed equally to this work
                Author notes
                Correspondence to: Thomas Royce, email : TRoyce@ 123456ashion.com
                Article
                27945
                10.18632/oncotarget.27945
                8057276
                33889297
                caac6a7d-1499-4e22-9d45-d9d036731d4c
                Copyright: © 2021 White et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 06 March 2021
                : 28 March 2021
                Categories
                Research Paper

                Oncology & Radiotherapy
                comprehensive genomic profiling,whole exome sequencing,rna sequencing,precision medicine,pan-cancer

                Comments

                Comment on this article