0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physicochemical and cytotoxicity analysis of green synthesis carbon dots for cell imaging

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Carbon dots (CDs) have outstanding optical properties, biocompatibility, and photostability, making them attractive for imaging applications. A facile and green one-step hydrothermal synthesis method is proposed, which can be safely used in a wide range of applications such as chemical sensing, bioimaging, and optoelectronics. In this study, we report green synthesis of carbon dots from bitter orange juice (Citrus Aurantium) by hydrothermal treatment for the first time. We studied effects of time, temperature, and pH on fluorescence of CDs, characterized them using various spectroscopic and microscopic methods, and evaluated their toxicity to different cell lines. Identifying an optimum reaction condition of 180 ºC for 7 h heating gave CDs that showed pH-dependent fluorescence, with the largest fluorescence at a pH of 7.0. The CDs were 1-2 nm in size with a spherical morphology and negative surface charge. The CDs showed a high quantum yield of 19.9 %, reasonable photostability, excellent water solubility, and long fluorescence lifetime. A one step hydrothermal rout led to various hydrophilic functional groups on the surface of the CDs. Our results showed that the CDs were non-toxic over a large concentration range and effective for imaging of cells, indicating their potential as imaging probes in medical diagnostics and biosensor applications.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments.

          Arc-synthesized single-walled carbon nanotubes have been purified through preparative electrophoresis in agarose gel and glass bead matrixes. Two major impurities were isolated: fluorescent carbon and short tubular carbon. Analysis of these two classes of impurities was done. The methods described may be readily extended to the separation of other water-soluble nanoparticles. The separated fluorescent carbon and short tubule carbon species promise to be interesting nanomaterials in their own right.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantum-sized carbon dots for bright and colorful photoluminescence.

            We report that nanoscale carbon particles (carbon dots) upon simple surface passivation are strongly photoluminescent in both solution and the solid state. The luminescence emission of the carbon dots is stable against photobleaching, and there is no blinking effect. These strongly emissive carbon dots may find applications similar to or beyond those of their widely pursued silicon counterparts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism.

              Carbon dots (CDs) with tunable photoluminescence (PL) and a quantum yield of up to 35% in water were hydrothermally synthesized in one pot and separated via silica column chromatography. These separated CDs emitted bright and stable luminescence in gradient colors from blue to red under a single-wavelength UV light. They exhibited high optical uniformity; that is, every sample showed only one peak in the PL excitation spectrum, only one peak in the excitation-independent PL emission spectrum, and similar monoexponential fluorescence lifetimes. Although these samples had similar distributions of particle size and graphite structure in their carbon cores, the surface state gradually varied among the samples, especially the degree of oxidation. Therefore, the observed red shift in their emission peaks from 440 to 625 nm was ascribed to a gradual reduction in their band gaps with the increasing incorporation of oxygen species into their surface structures. These energy bands were found to depend on the surface groups and structures but not on the particle size, not as in traditional semiconductor quantum dots. In addition, because of their excellent PL properties and low cytotoxicity, these CDs could be used to image cells in different colors under a single-wavelength light source, and the red-emitting CDs could be used to image live mice because of the strong penetration capability of their fluorescence.
                Bookmark

                Author and article information

                Journal
                EXCLI J
                EXCLI J
                EXCLI J
                EXCLI Journal
                Leibniz Research Centre for Working Environment and Human Factors
                1611-2156
                27 June 2019
                2019
                : 18
                : 454-466
                Affiliations
                [1 ]Protein Research Center, Shahid Beheshti University G.C., Tehran, Iran
                [2 ]Department of Bioengineering and Bionanotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran
                [3 ]Department of Biomedical Engineering, The University of Akron, Akron, OH 44236, USA
                [4 ]Institute for Color Science and Technology (ICST), Department of Surface Coatings and Corrosion, Tehran, Iran
                [5 ]Laser & Plasma Research Institute, Shahid Beheshti University G.C., Tehran, Iran
                Author notes
                *To whom correspondence should be addressed: Neda Esfandiari, Department of Bioengineering and Bionanotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran; Tel.: 00982129905946, E-mail: ne_esfandiari@ 123456sbu.ac.ir
                Article
                2019-1465 Doc454
                10.17179/excli2019-1465
                6694706
                31423124
                ca5ab8b1-1040-413f-85b1-1a959e85976b
                Copyright © 2019 Fatahi et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence ( http://creativecommons.org/licenses/by/4.0/) You are free to copy, distribute and transmit the work, provided the original author and source are credited.

                History
                : 23 May 2019
                : 24 June 2019
                Categories
                Original Article

                carbon dots,bitter orange,imaging,cytotoxicity
                carbon dots, bitter orange, imaging, cytotoxicity

                Comments

                Comment on this article