18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In normal tissue repair, macrophages exhibit a pro-inflammatory phenotype (M1) at early stages and a pro-healing phenotype (M2) at later stages. We have previously shown that M1 macrophages initiate angiogenesis while M2 macrophages promote vessel maturation. Therefore, we reasoned that scaffolds that promote sequential M1 and M2 polarization of infiltrating macrophages should result in enhanced angiogenesis and healing. To this end, we first analyzed the in vitro kinetics of macrophage phenotype switch using flow cytometry, gene expression, and cytokine secretion analysis. Then, we designed scaffolds for bone regeneration based on modifications of decellularized bone for a short release of interferon-gamma (IFNg) to promote the M1 phenotype, followed by a more sustained release of interleukin-4 (IL4) to promote the M2 phenotype. To achieve this sequential release profile, IFNg was physically adsorbed onto the scaffolds, while IL4 was attached via biotin-streptavidin binding. Interestingly, despite the strong interactions between biotin and streptavidin, release studies showed that biotinylated IL4 was released over 6 days. These scaffolds promoted sequential M1 and M2 polarization of primary human macrophages as measured by gene expression of ten M1 and M2 markers and secretion of four cytokines, although the overlapping phases of IFNg and IL4 release tempered polarization to some extent. Murine subcutaneous implantation model showed increased vascularization in scaffolds releasing IFNg compared to controls. This study demonstrates that scaffolds for tissue engineering can be designed to harness the angiogenic behavior of host macrophages towards scaffold vascularization.

          Related collections

          Author and article information

          Journal
          Biomaterials
          Biomaterials
          Elsevier BV
          1878-5905
          0142-9612
          Jan 2015
          : 37
          Affiliations
          [1 ] Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia 19104, PA, USA. Electronic address: kspiller@coe.drexel.edu.
          [2 ] School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia 19104, PA, USA. Electronic address: sn463@drexel.edu.
          [3 ] School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia 19104, PA, USA. Electronic address: cem73@drexel.edu.
          [4 ] Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA. Electronic address: rachel.anfang@gmail.com.
          [5 ] Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA. Electronic address: jjn2113@columbia.edu.
          [6 ] Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA. Electronic address: krn2111@columbia.edu.
          [7 ] School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia 19104, PA, USA.
          [8 ] Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA. Electronic address: gv2131@columbia.edu.
          Article
          S0142-9612(14)01064-3 NIHMS638428
          10.1016/j.biomaterials.2014.10.017
          4312192
          25453950
          ca4a6413-ad6c-4fd2-adb4-f46c236c220c
          History

          Bone,Cytokines,Immunomodulation,Macrophages,Regenerative medicine,Vascularization

          Comments

          Comment on this article