64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical Relevance of Loss of 11p15 in Primary and Metastatic Breast Cancer: Association with Loss of PRKCDBP Expression in Brain Metastases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The occurrence of brain metastases among breast cancer patients is currently rising with approximately 20–25% incidence rates, underlining the importance of the identification of new therapeutic and prognostic markers. We have previously screened for new markers for brain metastasis by array CGH. We found that loss of 11p15 is common among these patients. In this study, we investigated the clinical significance of loss of 11p15 in primary breast cancer (BC) and breast cancer brain metastases (BCBM). 11p15 aberration patterns were assessed by allelic imbalance (AI) analysis in primary BC (n = 78), BCBM (n = 21) and metastases from other distant sites (n = 6) using six different markers. AI at 11p15 was significantly associated with BCBM (p = 0.002). Interestingly, a subgroup of primary BC with a later relapse to the brain had almost equally high AI rates as the BCBM cases. In primary BC, AI was statistically significantly associated with high grade, negative hormone receptor status, and triple-negative (TNBC) tumors. Gene expression profiling identified PRKCDBP in the 11p15 region to be significantly downregulated in both BCBM and primary BC with brain relapse compared to primary tumors without relapse or bone metastasis (fdr<0.05). qRT-PCR confirmed these results and methylation was shown to be a common way to silence this gene. In conclusion, we found loss at 11p15 to be a marker for TNBC primary tumors and BCBM and PRKCDBP to be a potential target gene in this locus.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The biology of brain metastases-translation to new therapies.

          Brain metastases are a serious obstacle in the treatment of patients with solid tumors and contribute to the morbidity and mortality of these cancers. It is speculated that the frequency of brain metastasis is increasing for several reasons, including improved systemic therapy and survival, and detection of metastases in asymptomatic patients. The lack of preclinical models that recapitulate the clinical setting and the exclusion of patients with brain metastases from most clinical trials have slowed progress. Molecular factors contributing to brain metastases are being elucidated, such as genes involved in cell adhesion, extravasation, metabolism, and cellular signaling. Furthermore, the role of the unique brain microenvironment is beginning to be explored. Although the presence and function of the blood-brain barrier in metastatic tumors is still poorly understood, it is likely that some tumor cells are protected from therapeutics by the blood-tumor barrier, creating a sanctuary site. This Review discusses what is known about the biology of brain metastases, what preclinical models are available to study the disease, and which novel therapeutic strategies are being studied in patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer.

            Breast cancer is a leading cause of cancer-death among women, where the clinicopathological features of tumors are used to prognosticate and guide therapy. DNA copy number alterations (CNAs), which occur frequently in breast cancer and define key pathogenetic events, are also potentially useful prognostic or predictive factors. Here, we report a genome-wide array-based comparative genomic hybridization (array CGH) survey of CNAs in 89 breast tumors from a patient cohort with locally advanced disease. Statistical analysis links distinct cytoband loci harboring CNAs to specific clinicopathological parameters, including tumor grade, estrogen receptor status, presence of TP53 mutation, and overall survival. Notably, distinct spectra of CNAs also underlie the different subtypes of breast cancer recently defined by expression-profiling, implying these subtypes develop along distinct genetic pathways. In addition, higher numbers of gains/losses are associated with the "basal-like" tumor subtype, while high-level DNA amplification is more frequent in "luminal-B" subtype tumors, suggesting also that distinct mechanisms of genomic instability might underlie their pathogenesis. The identified CNAs may provide a basis for improved patient prognostication, as well as a starting point to define important genes to further our understanding of the pathobiology of breast cancer. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat (c) 2006 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function.

              Caveolae are a major membrane domain common to most cells. One of the defining features of this domain is the protein caveolin. The exact function of caveolin, however, is not clear. One possible function is to attract adapter molecules to caveolae in a manner similar to how clathrin attracts molecules to coated pits. Here, we characterize a candidate adapter molecule called SRBC. SRBC binds PKCdelta and is a member of the STICK (substrates that interact with C-kinase) superfamily of PKC-binding proteins. We also show it co-immunoprecipitates with caveolin-1. A leucine zipper in SRBC is essential for both co-precipitation with caveolin and localization to caveolae. SRBC remains associated with caveolin when caveolae bud to form vesicles (cavicles) that travel on microtubules to different regions of the cell. In the absence of SRBC, intracellular cavicle traffic is markedly impaired. We conclude that SRBC (sdr-related gene product that binds to c-kinase) and two other family members [PTRF (Pol I and transcription release factor) and SDPR] function as caveolin adapter molecules that regulate caveolae function.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                31 October 2012
                : 7
                : 10
                : e47537
                Affiliations
                [1 ]Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
                [2 ]Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
                [3 ]Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
                [4 ]Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
                National University of Ireland Galway, Ireland
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HW KP KL. Performed the experiments: HW BS JK IW. Analyzed the data: HW KL. Contributed reagents/materials/analysis tools: KL MW GS KP KM-L. Wrote the paper: HW BS JK IW KM-L GS MW KL KP.

                Article
                PONE-D-12-14638
                10.1371/journal.pone.0047537
                3485301
                23118876
                ca14c515-d9da-4702-b11f-7dadee1ad5c8
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 May 2012
                : 12 September 2012
                Page count
                Pages: 9
                Funding
                The work was funded by the Deutschen Forschungsgemeinschaft (DFG; PA 341/15-2) and the European Union (EU; DISMAL-project). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Epigenetics
                DNA modification
                Molecular Genetics
                Gene Identification and Analysis
                Cancer Genetics
                Gene Expression
                Genetic Mutation
                Genetic Screens
                Genetics of Disease
                Genomics
                Chromosome Biology
                Medicine
                Clinical Genetics
                Neurology
                Cerebellar Disorders
                Oncology
                Cancers and Neoplasms
                Neurological Tumors
                Brain Metastasis
                Breast Tumors

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content350

                Cited by12

                Most referenced authors390