7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Smart Wireless Particulate Matter Sensor Node for IoT-Based Strategic Monitoring Tool of Indoor COVID-19 Infection Risk via Airborne Transmission

      , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Indoor and outdoor air pollution are associated with particulate matter concentration of minute size that deeply penetrates the human body and leads to significant problems. These particles led to serious health problems and an increased spread of infection through airborne transmission, especially during the COVID-19 pandemic. Considering the role of particulate matter during the spread of COVID-19, this paper presents a smart wireless sensor node for measuring and monitoring particulate matter concentrations indoors. Data for these concentrations were obtained and used as a risk indicator for airborne COVID-19 transmission. The sensor node was designed to consider air quality monitoring device requirements for indoor applications, such as real-time, continuous, reliable, remote, compact-sized, low-cost, low-power, and accessible. Total energy consumption of the node during measurement and monitoring of particulate matter concentration was minimized using a low-power algorithm and a cloud storage system embedded during software development. Therefore, the sensor node consumed low energy for one cycle of the particulate matter measurement process. This low-power strategy was implemented as a preliminary design for the autonomous sensor node that enables it to integrate with an energy harvester element to harvest energy from ambient (light, heat, airflow) and store energy in the supercapacitor, which extends the sensor node life. Furthermore, the measurement data can be accessed using the Internet of Things and visualized graphically and numerically on a graphical user interface. The test and measurement results showed that the developed sensor node had very small measurement error, which was promising and appropriate for indoor particulate matter concentration measurement and monitoring, while data results were utilized as strategic tools to minimize the risk of airborne COVID-19 transmission.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found

          Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China

          In December 2019, novel coronavirus (2019-nCoV)-infected pneumonia (NCIP) occurred in Wuhan, China. The number of cases has increased rapidly but information on the clinical characteristics of affected patients is limited.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records

            Summary Background Previous studies on the pneumonia outbreak caused by the 2019 novel coronavirus disease (COVID-19) were based on information from the general population. Limited data are available for pregnant women with COVID-19 pneumonia. This study aimed to evaluate the clinical characteristics of COVID-19 in pregnancy and the intrauterine vertical transmission potential of COVID-19 infection. Methods Clinical records, laboratory results, and chest CT scans were retrospectively reviewed for nine pregnant women with laboratory-confirmed COVID-19 pneumonia (ie, with maternal throat swab samples that were positive for severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) who were admitted to Zhongnan Hospital of Wuhan University, Wuhan, China, from Jan 20 to Jan 31, 2020. Evidence of intrauterine vertical transmission was assessed by testing for the presence of SARS-CoV-2 in amniotic fluid, cord blood, and neonatal throat swab samples. Breastmilk samples were also collected and tested from patients after the first lactation. Findings All nine patients had a caesarean section in their third trimester. Seven patients presented with a fever. Other symptoms, including cough (in four of nine patients), myalgia (in three), sore throat (in two), and malaise (in two), were also observed. Fetal distress was monitored in two cases. Five of nine patients had lymphopenia (<1·0 × 10⁹ cells per L). Three patients had increased aminotransferase concentrations. None of the patients developed severe COVID-19 pneumonia or died, as of Feb 4, 2020. Nine livebirths were recorded. No neonatal asphyxia was observed in newborn babies. All nine livebirths had a 1-min Apgar score of 8–9 and a 5-min Apgar score of 9–10. Amniotic fluid, cord blood, neonatal throat swab, and breastmilk samples from six patients were tested for SARS-CoV-2, and all samples tested negative for the virus. Interpretation The clinical characteristics of COVID-19 pneumonia in pregnant women were similar to those reported for non-pregnant adult patients who developed COVID-19 pneumonia. Findings from this small group of cases suggest that there is currently no evidence for intrauterine infection caused by vertical transmission in women who develop COVID-19 pneumonia in late pregnancy. Funding Hubei Science and Technology Plan, Wuhan University Medical Development Plan.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association.

              In 2004, the first American Heart Association scientific statement on "Air Pollution and Cardiovascular Disease" concluded that exposure to particulate matter (PM) air pollution contributes to cardiovascular morbidity and mortality. In the interim, numerous studies have expanded our understanding of this association and further elucidated the physiological and molecular mechanisms involved. The main objective of this updated American Heart Association scientific statement is to provide a comprehensive review of the new evidence linking PM exposure with cardiovascular disease, with a specific focus on highlighting the clinical implications for researchers and healthcare providers. The writing group also sought to provide expert consensus opinions on many aspects of the current state of science and updated suggestions for areas of future research. On the basis of the findings of this review, several new conclusions were reached, including the following: Exposure to PM <2.5 microm in diameter (PM(2.5)) over a few hours to weeks can trigger cardiovascular disease-related mortality and nonfatal events; longer-term exposure (eg, a few years) increases the risk for cardiovascular mortality to an even greater extent than exposures over a few days and reduces life expectancy within more highly exposed segments of the population by several months to a few years; reductions in PM levels are associated with decreases in cardiovascular mortality within a time frame as short as a few years; and many credible pathological mechanisms have been elucidated that lend biological plausibility to these findings. It is the opinion of the writing group that the overall evidence is consistent with a causal relationship between PM(2.5) exposure and cardiovascular morbidity and mortality. This body of evidence has grown and been strengthened substantially since the first American Heart Association scientific statement was published. Finally, PM(2.5) exposure is deemed a modifiable factor that contributes to cardiovascular morbidity and mortality.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                November 2022
                November 03 2022
                : 14
                : 21
                : 14433
                Article
                10.3390/su142114433
                ca1363e5-430a-41ab-a73e-bcadea74446c
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article