15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia.

      The Journal of Immunology Author Choice
      Adaptor Proteins, Signal Transducing, deficiency, genetics, physiology, Animals, Apoptosis, immunology, Astrocytes, metabolism, Cell Death, Cells, Cultured, Mice, Mice, Inbred BALB C, Mice, Inbred C3H, Mice, Inbred C57BL, Mice, Knockout, Microglia, microbiology, pathology, Myeloid Differentiation Factor 88, Neurodegenerative Diseases, Neurons, Oligodendroglia, Rats, Rats, Sprague-Dawley, Signal Transduction, Streptococcus agalactiae, Toll-Like Receptor 2, biosynthesis

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Group B Streptococcus (GBS) is a major cause of bacterial meningitis and neurological morbidity in newborn infants. The cellular and molecular mechanisms by which this common organism causes CNS injury are unknown. We show that both heat-inactivated whole GBS and a secreted proteinaceous factor from GBS (GBS-F) induce neuronal apoptosis via the activation of murine microglia through a TLR2-dependent and MyD88-dependent pathway in vitro. Microglia, astrocytes, and oligodendrocytes, but not neurons, express TLR2. GBS as well as GBS-F induce the synthesis of NO in microglia derived from wild-type but not TLR2(-/-) or MyD88(-/-) mice. Neuronal death in neuronal cultures complemented with wild-type microglia is NO-dependent. We show for the first time a TLR-mediated mechanism of neuronal injury induced by a clinically relevant bacterium. This study demonstrates a causal molecular relationship between infection with GBS, activation of the innate immune system in the CNS through TLR2, and neurodegeneration. We suggest that this process contributes substantially to the serious morbidity associated with neonatal GBS meningitis and may provide a potential therapeutic target.

          Related collections

          Author and article information

          Comments

          Comment on this article