33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Benefits and Risks of Smallholder Livestock Production on Child Nutrition in Low- and Middle-Income Countries

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Livestock production may improve nutritional outcomes of pregnant women and children by increasing household income, availability of nutrient-dense foods, and women's empowerment. Nevertheless, the relationship is complex, and the nutritional status of children may be impaired by presence of or proximity to livestock and their pathogens. In this paper, we review the benefits and risks of livestock production on child nutrition. Evidence supports the nutritional benefits of livestock farming through income, production, and women's empowerment. Increasing animal source food consumption requires a combination of efforts, including improved animal management so that herd size is adequate to meet household income needs and consumption and addressing sociocultural and gendered norms. Evidence supports the inclusion of behavior change communication strategies into livestock production interventions to facilitate the sustainability of nutritional benefits over time, particularly interventions that engage women and foster dimensions of women's empowerment. In evaluating the risks of livestock production, evidence indicates that a broad range of enteric pathogens may chronically infect the intestines of children and, in combination with dietary deficits, may cause environmental enteric dysfunction (EED), a chronic inflammation of the gut. Some of the most important pathogens associated with EED are zoonotic in nature with livestock as their main reservoir. Very few studies have aimed to understand which livestock species contribute most to colonization with these pathogens, or how to reduce transmission. Control at the point of exposure has been investigated in a few studies, but much less effort has been spent on improving animal husbandry practices, which may have additional benefits. There is an urgent need for dedicated and long-term research to understand which livestock species contribute most to exposure of young children to zoonotic enteric pathogens, to test the potential of a wide range of intervention methods, to assess their effectiveness in randomized trials, and to assure their broad adaptation and sustainability. This review highlights the benefits and risks of livestock production on child nutrition. In addition to identifying research gaps, findings support inclusion of poor gut health as an immediate determinant of child undernutrition, expanding the established UNICEF framework which includes only inadequate diet and disease.

          Related collections

          Most cited references296

          • Record: found
          • Abstract: found
          • Article: not found

          Global trends in emerging infectious diseases

          The next new disease Emerging infectious diseases are a major threat to health: AIDS, SARS, drug-resistant bacteria and Ebola virus are among the more recent examples. By identifying emerging disease 'hotspots', the thinking goes, it should be possible to spot health risks at an early stage and prepare containment strategies. An analysis of over 300 examples of disease emerging between 1940 and 2004 suggests that these hotspots can be accurately mapped based on socio-economic, environmental and ecological factors. The data show that the surveillance effort, and much current research spending, is concentrated in developed economies, yet the risk maps point to developing countries as the more likely source of new diseases. Supplementary information The online version of this article (doi:10.1038/nature06536) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

            Summary Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of risk factor exposure and attributable burden of disease. By providing estimates over a long time series, this study can monitor risk exposure trends critical to health surveillance and inform policy debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2016. This study included 481 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk (RR) and exposure estimates from 22 717 randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources, according to the GBD 2016 source counting methods. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. Finally, we explored four drivers of trends in attributable burden: population growth, population ageing, trends in risk exposure, and all other factors combined. Findings Since 1990, exposure increased significantly for 30 risks, did not change significantly for four risks, and decreased significantly for 31 risks. Among risks that are leading causes of burden of disease, child growth failure and household air pollution showed the most significant declines, while metabolic risks, such as body-mass index and high fasting plasma glucose, showed significant increases. In 2016, at Level 3 of the hierarchy, the three leading risk factors in terms of attributable DALYs at the global level for men were smoking (124·1 million DALYs [95% UI 111·2 million to 137·0 million]), high systolic blood pressure (122·2 million DALYs [110·3 million to 133·3 million], and low birthweight and short gestation (83·0 million DALYs [78·3 million to 87·7 million]), and for women, were high systolic blood pressure (89·9 million DALYs [80·9 million to 98·2 million]), high body-mass index (64·8 million DALYs [44·4 million to 87·6 million]), and high fasting plasma glucose (63·8 million DALYs [53·2 million to 76·3 million]). In 2016 in 113 countries, the leading risk factor in terms of attributable DALYs was a metabolic risk factor. Smoking remained among the leading five risk factors for DALYs for 109 countries, while low birthweight and short gestation was the leading risk factor for DALYs in 38 countries, particularly in sub-Saharan Africa and South Asia. In terms of important drivers of change in trends of burden attributable to risk factors, between 2006 and 2016 exposure to risks explains an 9·3% (6·9–11·6) decline in deaths and a 10·8% (8·3–13·1) decrease in DALYs at the global level, while population ageing accounts for 14·9% (12·7–17·5) of deaths and 6·2% (3·9–8·7) of DALYs, and population growth for 12·4% (10·1–14·9) of deaths and 12·4% (10·1–14·9) of DALYs. The largest contribution of trends in risk exposure to disease burden is seen between ages 1 year and 4 years, where a decline of 27·3% (24·9–29·7) of the change in DALYs between 2006 and 2016 can be attributed to declines in exposure to risks. Interpretation Increasingly detailed understanding of the trends in risk exposure and the RRs for each risk-outcome pair provide insights into both the magnitude of health loss attributable to risks and how modification of risk exposure has contributed to health trends. Metabolic risks warrant particular policy attention, due to their large contribution to global disease burden, increasing trends, and variable patterns across countries at the same level of development. GBD 2016 findings show that, while it has huge potential to improve health, risk modification has played a relatively small part in the past decade. Funding The Bill & Melinda Gates Foundation, Bloomberg Philanthropies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk factors for human disease emergence.

              A comprehensive literature review identifies 1415 species of infectious organism known to be pathogenic to humans, including 217 viruses and prions, 538 bacteria and rickettsia, 307 fungi, 66 protozoa and 287 helminths. Out of these, 868 (61%) are zoonotic, that is, they can be transmitted between humans and animals, and 175 pathogenic species are associated with diseases considered to be 'emerging'. We test the hypothesis that zoonotic pathogens are more likely to be associated with emerging diseases than non-emerging ones. Out of the emerging pathogens, 132 (75%) are zoonotic, and overall, zoonotic pathogens are twice as likely to be associated with emerging diseases than non-zoonotic pathogens. However, the result varies among taxa, with protozoa and viruses particularly likely to emerge, and helminths particularly unlikely to do so, irrespective of their zoonotic status. No association between transmission route and emergence was found. This study represents the first quantitative analysis identifying risk factors for human disease emergence.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Nutr
                Front Nutr
                Front. Nutr.
                Frontiers in Nutrition
                Frontiers Media S.A.
                2296-861X
                27 October 2021
                2021
                : 8
                : 751686
                Affiliations
                [1] 1Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, FL, United States
                [2] 2Emerging Pathogens Institute, University of Florida , Gainesville, FL, United States
                [3] 3Department of Social and Behavioral Sciences, College of Public Health and Health Professions, University of Florida , Gainesville, FL, United States
                [4] 4Health Science Center Libraries, University of Florida , Gainesville, FL, United States
                [5] 5Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida , Gainesville, FL, United States
                [6] 6Institute for Sustainable Food Systems, University of Florida , Gainesville, FL, United States
                [7] 7Center for African Studies, University of Florida , Gainesville, FL, United States
                Author notes

                Edited by: Sara Monteiro Pires, Technical University of Denmark, Denmark

                Reviewed by: Luis Paulo Vidaletti, International Center for Equity in Health, Brazil; Thomas Marsh, Washington State University, United States

                *Correspondence: Sarah L. McKune smckune@ 123456ufl.edu

                This article was submitted to Nutrition and Food Science Technology, a section of the journal Frontiers in Nutrition

                †These authors have contributed equally to this work and share first authorship

                ‡These authors share senior authorship

                Article
                10.3389/fnut.2021.751686
                8579112
                34778344
                c9dfc979-7cbf-4f44-9f54-6d5fdd84bbb6
                Copyright © 2021 Chen, Mechlowitz, Li, Schaefer, Havelaar and McKune.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 August 2021
                : 29 September 2021
                Page count
                Figures: 2, Tables: 8, Equations: 0, References: 306, Pages: 31, Words: 25827
                Funding
                Funded by: United States Agency for International Development, doi 10.13039/100000200;
                Funded by: Bill and Melinda Gates Foundation, doi 10.13039/100000865;
                Categories
                Nutrition
                Review

                child nutrition,livestock,gut health,enteric pathogens,risk factors,animal feces,wash (water sanitation and hygiene),environmental enteric dysfunction (eed)

                Comments

                Comment on this article