14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hallmarks of chronic neurodegenerative disease include progressive synaptic loss and neuronal cell death, yet the cellular pathways that underlie these processes remain largely undefined. We provide evidence that dual leucine zipper kinase (DLK) is an essential regulator of the progressive neurodegeneration that occurs in amyotrophic lateral sclerosis and Alzheimer’s disease. We demonstrate that DLK/c-Jun N-terminal kinase signaling was increased in mouse models and human patients with these disorders and that genetic deletion of DLK protected against axon degeneration, neuronal loss, and functional decline in vivo. Furthermore, pharmacological inhibition of DLK activity was sufficient to attenuate the neuronal stress response and to provide functional benefit even in the presence of ongoing disease. These findings demonstrate that pathological activation of DLK is a conserved mechanism that regulates neurodegeneration and suggest that DLK inhibition may be a potential approach to treat multiple neurodegenerative diseases.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Book: not found

          The operated Markov´s chains in economy (discrete chains of Markov with the income)

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration.

            Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases that show considerable clinical and pathologic overlap, with no effective treatments available. Mutations in the RNA binding protein TDP-43 were recently identified in patients with familial amyotrophic lateral sclerosis (ALS), and TDP-43 aggregates are found in both ALS and FTLD-U (FTLD with ubiquitin aggregates), suggesting a common underlying mechanism. We report that mice expressing a mutant form of human TDP-43 develop a progressive and fatal neurodegenerative disease reminiscent of both ALS and FTLD-U. Despite universal transgene expression throughout the nervous system, pathologic aggregates of ubiquitinated proteins accumulate only in specific neuronal populations, including layer 5 pyramidal neurons in frontal cortex, as well as spinal motor neurons, recapitulating the phenomenon of selective vulnerability seen in patients with FTLD-U and ALS. Surprisingly, cytoplasmic TDP-43 aggregates are not present, and hence are not required for TDP-43-induced neurodegeneration. These results indicate that the cellular and molecular substrates for selective vulnerability in FTLD-U and ALS are shared between mice and humans, and suggest that altered DNA/RNA-binding protein function, rather than toxic aggregation, is central to TDP-43-related neurodegeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Axon regeneration requires a conserved MAP kinase pathway.

              Regeneration of injured neurons can restore function, but most neurons regenerate poorly or not at all. The failure to regenerate in some cases is due to a lack of activation of cell-intrinsic regeneration pathways. These pathways might be targeted for the development of therapies that can restore neuron function after injury or disease. Here, we show that the DLK-1 mitogen-activated protein (MAP) kinase pathway is essential for regeneration in Caenorhabditis elegans motor neurons. Loss of this pathway eliminates regeneration, whereas activating it improves regeneration. Further, these proteins also regulate the later step of growth cone migration. We conclude that after axon injury, activation of this MAP kinase cascade is required to switch the mature neuron from an aplastic state to a state capable of growth.
                Bookmark

                Author and article information

                Journal
                Science Translational Medicine
                Sci. Transl. Med.
                American Association for the Advancement of Science (AAAS)
                1946-6234
                1946-6242
                August 16 2017
                August 16 2017
                August 16 2017
                August 16 2017
                : 9
                : 403
                : eaag0394
                Article
                10.1126/scitranslmed.aag0394
                28814543
                c9c128ab-17d7-4c0e-83a2-45da552a8e83
                © 2017

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,827

                Cited by63

                Most referenced authors802