0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of Different Thawing and Warming Processes on Human Milk Composition

      , , , , ,
      The Journal of Nutrition
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Human milk oligosaccharides: every baby needs a sugar mama.

          L Bode (2012)
          Human milk oligosaccharides (HMOs) are a family of structurally diverse unconjugated glycans that are highly abundant in and unique to human milk. Originally, HMOs were discovered as a prebiotic "bifidus factor" that serves as a metabolic substrate for desired bacteria and shapes an intestinal microbiota composition with health benefits for the breast-fed neonate. Today, HMOs are known to be more than just "food for bugs". An accumulating body of evidence suggests that HMOs are antiadhesive antimicrobials that serve as soluble decoy receptors, prevent pathogen attachment to infant mucosal surfaces and lower the risk for viral, bacterial and protozoan parasite infections. In addition, HMOs may modulate epithelial and immune cell responses, reduce excessive mucosal leukocyte infiltration and activation, lower the risk for necrotizing enterocolitis and provide the infant with sialic acid as a potentially essential nutrient for brain development and cognition. Most data, however, stem from in vitro, ex vivo or animal studies and occasionally from association studies in mother-infant cohorts. Powered, randomized and controlled intervention studies will be needed to confirm relevance for human neonates. The first part of this review introduces the pioneers in HMO research, outlines HMO structural diversity and describes what is known about HMO biosynthesis in the mother's mammary gland and their metabolism in the breast-fed infant. The second part highlights the postulated beneficial effects of HMO for the breast-fed neonate, compares HMOs with oligosaccharides in the milk of other mammals and in infant formula and summarizes the current roadblocks and future opportunities for HMO research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosomes with Immune Modulatory Features Are Present in Human Breast Milk

            Breast milk is a complex liquid with immune-competent cells and soluble proteins that provide immunity to the infant and affect the maturation of the infant's immune system. Exosomes are nanovesicles (30-100 nm) with an endosome-derived limiting membrane secreted by a diverse range of cell types. Because exosomes carry immunorelevant structures, they are suggested to participate in directing the immune response. We hypothesized that human breast milk contain exosomes, which may be important for the development of the infant's immune system. We isolated vesicles from the human colostrum and mature breast milk by ultracentrifugations and/or immuno-isolation on paramagnetic beads. We found that the vesicles displayed a typical exosome-like size and morphology as analyzed by electron microscopy. Furthermore, they floated at a density between 1.10 and 1.18 g/ml in a sucrose gradient, corresponding to the known density of exosomes. In addition, MHC classes I and II, CD63, CD81, and CD86 were detected on the vesicles by flow cytometry. Western blot and mass spectrometry further confirmed the presence of several exosome-associated molecules. Functional analysis revealed that the vesicle preparation inhibited anti-CD3-induced IL-2 and IFN-gamma production from allogeneic and autologous PBMC. In addition, an increased number of Foxp3(+)CD4(+)CD25(+) T regulatory cells were observed in PBMC incubated with milk vesicle preparations. We conclude that human breast milk contains exosomes with the capacity to influence immune responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures

              Extracellular vesicles (EV) in breast milk carry immune relevant proteins and could play an important role in the instruction of the neonatal immune system. To further analyze these EV and to elucidate their function it is important that native populations of EV can be recovered from (stored) breast milk samples in a reproducible fashion. However, the impact of isolation and storage procedures on recovery of breast milk EV has remained underexposed. Here, we aimed to define parameters important for EV recovery from fresh and stored breast milk. To compare various protocols across different donors, breast milk was spiked with a well-defined murine EV population. We found that centrifugation of EV down into density gradients largely improved density-based separation and isolation of EV, compared to floatation up into gradients after high-force pelleting of EV. Using cryo-electron microscopy, we identified different subpopulations of human breast milk EV and a not previously described population of lipid tubules. Additionally, the impact of cold storage on breast milk EV was investigated. We determined that storing unprocessed breast milk at −80°C or 4°C caused death of cells present in breast milk, leading to contamination of the breast milk EV population with storage-induced EV. Here, an alternative method is proposed to store breast milk samples for EV analysis at later time points. The proposed adaptations to the breast milk storage and EV isolation procedures can be applied for EV-based biomarker profiling of breast milk and functional analysis of the role of breast milk EV in the development of the neonatal immune system.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                The Journal of Nutrition
                The Journal of Nutrition
                Elsevier BV
                00223166
                February 2024
                February 2024
                : 154
                : 2
                : 314-324
                Article
                10.1016/j.tjnut.2023.11.027
                c9b64d92-6472-42b5-b6cb-08d529a8a786
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article