6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Li–Fraumeni Syndrome: Mutation of TP53 Is a Biomarker of Hereditary Predisposition to Tumor: New Insights and Advances in the Treatment

      , , , ,
      Cancers
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Li–Fraumeni syndrome (LFS) is a rare familial tumor predisposition syndrome with autosomal dominant inheritance, involving germline mutations of the TP53 tumor suppressor gene. The most frequent tumors that arise in patients under the age of 45 are osteosarcomas, soft-tissue sarcomas, breast tumors in young women, leukemias/lymphomas, brain tumors, and tumors of the adrenal cortex. To date, no other gene mutations have been associated with LFS. The diagnosis is usually confirmed by genetic testing for the identification of TP53 mutations; therefore, these mutations are considered the biomarkers associated with the tumor spectrum of LFS. Here, we aim to review novel molecular mechanisms involved in the oncogenic functions of mutant p53 in LFS and to discuss recent new diagnostic and therapeutic approaches exploiting TP53 mutations as biomarkers and druggable targets.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

          The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants. 1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next generation sequencing. By adopting and leveraging next generation sequencing, clinical laboratories are now performing an ever increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes and epigenetic assays for genetic disorders. By virtue of increased complexity, this paradigm shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context, the ACMG convened a workgroup in 2013 comprised of representatives from the ACMG, the Association for Molecular Pathology (AMP) and the College of American Pathologists (CAP) to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP and CAP stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes. This report recommends the use of specific standard terminology: ‘pathogenic’, ‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, and ‘benign’ to describe variants identified in Mendelian disorders. Moreover, this recommendation describes a process for classification of variants into these five categories based on criteria using typical types of variant evidence (e.g. population data, computational data, functional data, segregation data, etc.). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a CLIA-approved laboratory with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or equivalent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Pan-cancer analysis of whole genomes

            Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale 1–3 . Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter 4 ; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation 5,6 ; analyses timings and patterns of tumour evolution 7 ; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity 8,9 ; and evaluates a range of more-specialized features of cancer genomes 8,10–18 .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutant p53: one name, many proteins.

              There is now strong evidence that mutation not only abrogates p53 tumor-suppressive functions, but in some instances can also endow mutant proteins with novel activities. Such neomorphic p53 proteins are capable of dramatically altering tumor cell behavior, primarily through their interactions with other cellular proteins and regulation of cancer cell transcriptional programs. Different missense mutations in p53 may confer unique activities and thereby offer insight into the mutagenic events that drive tumor progression. Here we review mechanisms by which mutant p53 exerts its cellular effects, with a particular focus on the burgeoning mutant p53 transcriptome, and discuss the biological and clinical consequences of mutant p53 gain of function.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CANCCT
                Cancers
                Cancers
                MDPI AG
                2072-6694
                August 2022
                July 27 2022
                : 14
                : 15
                : 3664
                Article
                10.3390/cancers14153664
                35954327
                c9b535b9-335c-4d6b-aba3-ce1973ea5813
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article