7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Artificial Intelligence in Retinopathy of Prematurity Diagnosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retinopathy of prematurity (ROP) is a leading cause of childhood blindness worldwide. The diagnosis of ROP is subclassified by zone, stage, and plus disease, with each area demonstrating significant intra- and interexpert subjectivity and disagreement. In addition to improved efficiencies for ROP screening, artificial intelligence may lead to automated, quantifiable, and objective diagnosis in ROP. This review focuses on the development of artificial intelligence for automated diagnosis of plus disease in ROP and highlights the clinical and technical challenges of both the development and implementation of artificial intelligence in the real world.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices

          Artificial Intelligence (AI) has long promised to increase healthcare affordability, quality and accessibility but FDA, until recently, had never authorized an autonomous AI diagnostic system. This pivotal trial of an AI system to detect diabetic retinopathy (DR) in people with diabetes enrolled 900 subjects, with no history of DR at primary care clinics, by comparing to Wisconsin Fundus Photograph Reading Center (FPRC) widefield stereoscopic photography and macular Optical Coherence Tomography (OCT), by FPRC certified photographers, and FPRC grading of Early Treatment Diabetic Retinopathy Study Severity Scale (ETDRS) and Diabetic Macular Edema (DME). More than mild DR (mtmDR) was defined as ETDRS level 35 or higher, and/or DME, in at least one eye. AI system operators underwent a standardized training protocol before study start. Median age was 59 years (range, 22–84 years); among participants, 47.5% of participants were male; 16.1% were Hispanic, 83.3% not Hispanic; 28.6% African American and 63.4% were not; 198 (23.8%) had mtmDR. The AI system exceeded all pre-specified superiority endpoints at sensitivity of 87.2% (95% CI, 81.8–91.2%) (>85%), specificity of 90.7% (95% CI, 88.3–92.7%) (>82.5%), and imageability rate of 96.1% (95% CI, 94.6–97.3%), demonstrating AI’s ability to bring specialty-level diagnostics to primary care settings. Based on these results, FDA authorized the system for use by health care providers to detect more than mild DR and diabetic macular edema, making it, the first FDA authorized autonomous AI diagnostic system in any field of medicine, with the potential to help prevent vision loss in thousands of people with diabetes annually. ClinicalTrials.gov NCT02963441
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Retinopathy of prematurity: a global perspective of the epidemics, population of babies at risk and implications for control.

            Globally at least 50,000 children are blind from retinopathy of prematurity (ROP) which is now a significant cause of blindness in many middle income countries in Latin American and Eastern Europe. Retinopathy of prematurity is also being reported from the emerging economies of India and China. The characteristics of babies developing severe disease varies, with babies in middle and low income countries having a much wider range of birth weights and gestational ages than is currently the case in industrialized countries. Rates of disease requiring treatment also tend to be higher in middle and low income countries suggesting that babies are being exposed to risk factors which are, to a large extent, being controlled in industrialised countries. The reasons for this "third epidemic" of ROP are discussed as well as strategies for control, including the need for locally relevant, evidence based criteria which ensure that all babies at risk are examined.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks

              Question Can an algorithm based on deep learning achieve expert-level performance at diagnosing plus disease in retinopathy of prematurity? Finding In this technology evaluation study including 5511 retinal photographs, using 5-fold cross-validation, the algorithm achieved mean areas under the receiver operating characteristic curve of 0.94 and 0.99 for the diagnoses of normal and plus disease, respectively. On an independent test set of 100 images, the algorithm achieved 91% accuracy and a quadratic-weighted κ coefficient of 0.92, outperforming 6 of 8 retinopathy of prematurity experts. Meaning These findings suggest the proposed algorithm can objectively diagnose plus disease with a proficiency comparable with human experts. This technology evaluation study examines the validity of an algorithm based on deep learning for automated diagnosis of plus disease in retinopathy of prematurity from retinal photographs. Importance Retinopathy of prematurity (ROP) is a leading cause of childhood blindness worldwide. The decision to treat is primarily based on the presence of plus disease, defined as dilation and tortuosity of retinal vessels. However, clinical diagnosis of plus disease is highly subjective and variable. Objective To implement and validate an algorithm based on deep learning to automatically diagnose plus disease from retinal photographs. Design, Setting, and Participants A deep convolutional neural network was trained using a data set of 5511 retinal photographs. Each image was previously assigned a reference standard diagnosis (RSD) based on consensus of image grading by 3 experts and clinical diagnosis by 1 expert (ie, normal, pre–plus disease, or plus disease). The algorithm was evaluated by 5-fold cross-validation and tested on an independent set of 100 images. Images were collected from 8 academic institutions participating in the Imaging and Informatics in ROP (i-ROP) cohort study. The deep learning algorithm was tested against 8 ROP experts, each of whom had more than 10 years of clinical experience and more than 5 peer-reviewed publications about ROP. Data were collected from July 2011 to December 2016. Data were analyzed from December 2016 to September 2017. Exposures A deep learning algorithm trained on retinal photographs. Main Outcomes and Measures Receiver operating characteristic analysis was performed to evaluate performance of the algorithm against the RSD. Quadratic-weighted κ coefficients were calculated for ternary classification (ie, normal, pre–plus disease, and plus disease) to measure agreement with the RSD and 8 independent experts. Results Of the 5511 included retinal photographs, 4535 (82.3%) were graded as normal, 805 (14.6%) as pre–plus disease, and 172 (3.1%) as plus disease, based on the RSD. Mean (SD) area under the receiver operating characteristic curve statistics were 0.94 (0.01) for the diagnosis of normal (vs pre–plus disease or plus disease) and 0.98 (0.01) for the diagnosis of plus disease (vs normal or pre–plus disease). For diagnosis of plus disease in an independent test set of 100 retinal images, the algorithm achieved a sensitivity of 93% with 94% specificity. For detection of pre–plus disease or worse, the sensitivity and specificity were 100% and 94%, respectively. On the same test set, the algorithm achieved a quadratic-weighted κ coefficient of 0.92 compared with the RSD, outperforming 6 of 8 ROP experts. Conclusions and Relevance This fully automated algorithm diagnosed plus disease in ROP with comparable or better accuracy than human experts. This has potential applications in disease detection, monitoring, and prognosis in infants at risk of ROP.
                Bookmark

                Author and article information

                Journal
                Transl Vis Sci Technol
                Transl Vis Sci Technol
                tvst
                tvst
                TVST
                Translational Vision Science & Technology
                The Association for Research in Vision and Ophthalmology
                2164-2591
                10 February 2020
                February 2020
                : 9
                : 2
                : 5
                Affiliations
                [1 ] Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University , Portland, OR, USA
                [2 ] Department of Ophthalmology, University of Illinois , Chicago, IL, USA
                [3 ] Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School , Boston, MA, USA
                [4 ] Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University , Portland, OR, USA
                Author notes
                Correspondence: J. Peter Campbell, Oregon Health & Science University, Department of Ophthalmology , 3375 SW Terwilliger Blvd, Portland, OR 97239, USA. e-mail: campbelp@ 123456ohsu.edu
                Article
                TVST-19-2010
                10.1167/tvst.9.2.5
                7343673
                32704411
                c9a509dd-0d9e-4c2f-ab80-db10123d83bc
                Copyright 2020 The Authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 21 November 2019
                : 18 November 2019
                Page count
                Pages: 10
                Categories
                Special Issue

                retinopathy of prematurity,artificial intelligence,machine learning,pediatric retina

                Comments

                Comment on this article