8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Mutational Analysis of the Binding of Staphylococcal Enterotoxins B and C3 to the T Cell Receptor β Chain and Major Histocompatibility Complex Class II

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The three-dimensional structure of the complex between a T cell receptor (TCR) β chain (mouse Vβ8.2Jβ2.1Cβ1) and the superantigen (SAG) staphylococcal enterotoxin C3 (SEC3) has been recently determined to 3.5 Å resolution. To evaluate the actual contribution of individual SAG residues to stabilizing the β–SEC3 complex, as well as to investigate the relationship between the affinity of SAGs for TCR and MHC and their ability to activate T cells, we measured the binding of a set of SEC3 and staphylococcal enterotoxin B (SEB) mutants to soluble recombinant TCR β chain and to the human MHC class II molecule HLA-DR1. Affinities were determined by sedimentation equilibrium and/or surface plasmon detection, while mitogenic potency was assessed using T cells from rearrangement-deficient TCR transgenic mice. We show that there is a clear and simple relationship between the affinity of SAGs for the TCR and their biological activity: the tighter the binding of a particular mutant of SEC3 or SEB to the TCR β chain, the greater its ability to stimulate T cells. We also find that there is an interplay between TCR–SAG and SAG–MHC interactions in determining mitogenic potency, such that a small increase in the affinity of a SAG for MHC can overcome a large decrease in the SAG's affinity for the TCR. Finally, we observe that those SEC3 residues that make the greatest energetic contribution to stabilizing the β–SEC3 complex (“hot spot” residues) are strictly conserved among enterotoxins reactive with mouse Vβ8.2, thereby providing a basis for understanding why SAGs having other residues at these positions show different Vβ-binding specificities.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Serial triggering of many T-cell receptors by a few peptide-MHC complexes.

          T lymphocytes can recognize and be activated by a very small number of complexes of peptide with major histocompatibility complex (MHC) molecules displayed on the surface of antigen-presenting cells (APCs). The interaction between the T-cell receptor (TCR) and its ligand has low affinity and high off-rate. Both findings suggest that an extremely small number of TCRs must be engaged in interaction with APCs and raise the question of how so few receptors can transduce an activation signal. Here we show that a small number of peptide-MHC complexes can achieve a high TCR occupancy, because a single complex can serially engage and trigger up to approximately 200 TCRs. Furthermore, TCR occupancy is proportional to the T cell's biological response. Our findings suggest that the low affinity of the TCR can be instrumental in enabling a small number of antigenic complexes to be detected.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            T cell activation determined by T cell receptor number and tunable thresholds.

            The requirements for T cell activation have been reported to vary widely depending on the state of the T cell, the type of antigen-presenting cell, and the nature of the T cell receptor (TCR) ligand. A unitary requirement for T cell responses was revealed by measurement of the number of triggered TCRs. Irrespective of the nature of the triggering ligand, T cells "counted" the number of triggered TCRs and responded when a threshold of approximately 8000 TCRs was reached. The capacity to reach the activation threshold was severely compromised by a reduction in the number of TCRs. Costimulatory signals lowered the activation threshold to approximately 1500 TCRs, thus making T cells more sensitive to antigenic stimulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology.

              The elucidation of the phenomena of T cell antagonism and partial activation by altered peptide ligands has necessitated a revision in the traditional concepts of TCR recognition of antigen and subsequent signal transduction. Whereas previous models supported a single ligand specificity for any particular T cell, many studies using analogs of immunogenic peptides have now demonstrated a flexibility in this recognition. Moreover, interaction with such altered peptide ligands can result in dramatically different phenotypes of the T cells, ranging from inducing selective stimulatory functions to completely turning off their functional capacity. Investigations of the biochemical basis leading to these phenotypes have shown that altered peptide ligands can induce a qualitatively different pattern of signal transduction events than does any concentration of the native ligand. Such observations imply that several signaling modules are directly linked to the TCR/CD3 complex and that they can be dissociated from each other as a direct result of the nature of the ligand bound. Interestingly, many in vivo models of T cell activation are compatible with a selective signaling model, and several studies have shown that peptide analogs can play a role in various T cell biologic phenomena. These data strongly suggest that naturally occurring altered peptide ligands for any TCR exist in the repertoire of self-peptides or, in nature, derived from pathogens, and recent reports provide compelling evidence that this is indeed the case. The concept of altered peptide ligands, their effects on T cell signaling, the hypothesized mechanisms by which they exert their effects, and their possible roles in shaping the T cell immune response are the scope of this review.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                16 March 1998
                : 187
                : 6
                : 823-833
                Affiliations
                From the [* ]Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850; []Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada; the [§ ]Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844; the []Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455; and the []Basel Institute for Immunology, Postfach CH-4005, Basel, Switzerland
                Author notes

                Address correspondence to Dr. Roy A. Mariuzza, Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 9600 Gudelsky Dr., Rockville, MD 20850. Phone: 301-738-6243; Fax: 301-738-6255; E-mail: mariuzza@ 123456indigo2.carb.nist.gov

                Article
                10.1084/jem.187.6.823
                2212189
                9500785
                c9a07050-b717-4c83-9baf-73d29a7a5cb9
                Copyright @ 1998
                History
                : 18 September 1997
                : 22 December 1997
                Categories
                Article
                Articles

                Medicine
                Medicine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content380

                Cited by32

                Most referenced authors282