Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondria in skin health, aging, and disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The skin is a high turnover organ, and its constant renewal depends on the rapid proliferation of its progenitor cells. The energy requirement for these metabolically active cells is met by mitochondrial respiration, an ATP generating process driven by a series of protein complexes collectively known as the electron transport chain (ETC) that is located on the inner membrane of the mitochondria. However, reactive oxygen species (ROS) like superoxide, singlet oxygen, peroxides are inevitably produced during respiration and disrupt macromolecular and cellular structures if not quenched by the antioxidant system. The oxidative damage caused by mitochondrial ROS production has been established as the molecular basis of multiple pathophysiological conditions, including aging and cancer. Not surprisingly, the mitochondria are the primary organelle affected during chronological and UV-induced skin aging, the phenotypic manifestations of which are the direct consequence of mitochondrial dysfunction. Also, deletions and other aberrations in the mitochondrial DNA (mtDNA) are frequent in photo-aged skin and skin cancer lesions. Recent studies have revealed a more innate role of the mitochondria in maintaining skin homeostasis and pigmentation, which are affected when the essential mitochondrial functions are impaired. Some common and rare skin disorders have a mitochondrial involvement and include dermal manifestations of primary mitochondrial diseases as well as congenital skin diseases caused by damaged mitochondria. With studies increasingly supporting the close association between mitochondria and skin health, its therapeutic targeting in the skin—either via an ATP production boost or free radical scavenging—has gained attention from clinicians and aestheticians alike. Numerous bioactive compounds have been identified that improve mitochondrial functions and have proved effective against aged and diseased skin. In this review, we discuss the essential role of mitochondria in regulating normal and abnormal skin physiology and the possibility of targeting this organelle in various skin disorders.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Telomere dysfunction induces metabolic and mitochondrial compromise.

          Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1β, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1β promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere-p53-PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mitochondrial genome: structure, transcription, translation and replication.

            Mitochondria play a central role in cellular energy provision. The organelles contain their own genome with a modified genetic code. The mammalian mitochondrial genome is transmitted exclusively through the female germ line. The human mitochondrial DNA (mtDNA) is a double-stranded, circular molecule of 16569 bp and contains 37 genes coding for two rRNAs, 22 tRNAs and 13 polypeptides. The mtDNA-encoded polypeptides are all subunits of enzyme complexes of the oxidative phosphorylation system. Mitochondria are not self-supporting entities but rely heavily for their functions on imported nuclear gene products. The basic mechanisms of mitochondrial gene expression have been solved. Cis-acting mtDNA sequences have been characterised by sequence comparisons, mapping studies and mutation analysis both in vitro and in patients harbouring mtDNA mutations. Characterisation of trans-acting factors has proven more difficult but several key enzymes involved in mtDNA replication, transcription and protein synthesis have now been biochemically identified and some have been cloned. These studies revealed that, although some factors may have an additional function elsewhere in the cell, most are unique to mitochondria. It is expected that cell cultures of patients with mitochondrial diseases will increasingly be used to address fundamental questions about mtDNA expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The epidemiology of UV induced skin cancer

              There is persuasive evidence that each of the three main types of skin cancer, basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and melanoma, is caused by sun exposure. The incidence rate of each is higher in fairer skinned, sun-sensitive rather than darker skinned, less sun-sensitive people; risk increases with increasing ambient solar radiation; the highest densities are on the most sun exposed parts of the body and the lowest on the least exposed; and they are associated in individuals with total (mainly SCC), occupational (mainly SCC) and non-occupational or recreational sun exposure (mainly melanoma and BCC) and a history of sunburn and presence of benign sun damage in the skin. That UV radiation specifically causes these skin cancers depends on indirect inferences from the action spectrum of solar radiation for skin cancer from studies in animals and the action spectrum for dipyrimidine dimers and evidence that presumed causative mutations for skin cancer arise most commonly at dipyrimidine sites. Sun protection is essential if skin cancer incidence is to be reduced. The epidemiological data suggest that in implementing sun protection an increase in intermittency of exposure should be avoided, that sun protection will have the greatest impact if achieved as early as possible in life and that it will probably have an impact later in life, especially in those who had high childhood exposure to solar radiation.
                Bookmark

                Author and article information

                Contributors
                kksingh@uab.edu
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                9 June 2020
                9 June 2020
                June 2020
                : 11
                : 6
                : 444
                Affiliations
                [1 ]Yuva Biosciences, 1500 1st Avenue N, Birmingham, AL 35203 USA
                [2 ]ISNI 0000000106344187, GRID grid.265892.2, Department of Genetics, , University of Alabama at Birmingham, ; Birmingham, AL 35294 USA
                [3 ]ISNI 0000000106344187, GRID grid.265892.2, Integartive Center For Aging Research and O’Neal Comprehensive Cancer Center, , University of Alabama at Birmingham, ; Birmingham, AL 35294 USA
                Article
                2649
                10.1038/s41419-020-2649-z
                7283348
                32518230
                c9791cd2-9dc2-4de4-94ec-510cdc994971
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 March 2020
                : 22 May 2020
                : 25 May 2020
                Funding
                Funded by: National Institute of Health (NIH)
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2020

                Cell biology
                skin cancer,metabolic disorders
                Cell biology
                skin cancer, metabolic disorders

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content322

                Cited by97

                Most referenced authors1,630