31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Spinal cord injuries induce changes in CB1 cannabinoid receptor and C-C chemokine expression in brain areas underlying circuitry of chronic pain conditions.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to their involvement in neuro-modulatory processes, the endogenous cannabinoid system and chemokine network, which were shown to interact which each other, are potential key elements in the cascades underlying central neuropathic pain development after spinal cord injury (SCI). Expression profiles of cannabinoid receptor type-1 (CB(1)), and of the chemokines chemokine ligand 2 (C-C motif ) (CCL2), chemokine ligand 3 (C-C motif ) (CCL3), plus their main receptors CCR2 and CCR1, were investigated in brain regions related to pain, emotion, learning, and memory in a rat SCI paradigm of post-traumatic neuropathic pain. Immunoreactivity (IR) was investigated 7 days and 42 days after sham operation, and moderate (100-kdyn), and severe (200-kdyn) thoracic spinal cord contusion lesions. Hippocampal (HC) subregions, amygdaloid complex, anterior cingulate cortex (ACC), periaqueductal gray (PAG), and thalamic nuclei were analyzed. Seven days after lesioning, CB(1) IR was induced in thalamic nuclei and HC subregions (CA3 and dentate gyrus), and downregulated in amygdaloid nuclei, ACC, and PAG. On day 42, CB(1) IR remained elevated in the HC and thalamic areas, and was induced in ACC after 100-kdyn, but downregulated after 200-kdyn lesions. It remained reduced in the PAG of severely lesioned animals, paralleling their prolonged neuropathic pain-related behavior. Double-labeling revealed partial co-expression of CB(1) with the pain-related vanilloid receptor transient receptor potential vanilloid receptor 1 (TRPV1), and chemokines (CCL2 and CCL3). These chemokines were induced in the PAG, thalamus, and HC, especially in the chronic time course after severe SCI. Thus interactions of CB(1), C-C chemokines, and TRPV1 likely play a role in SCI-induced plastic changes in the brain, underlying emotional-affective pain responses and central pain development after spinal cord lesions.

          Related collections

          Author and article information

          Journal
          J Neurotrauma
          Journal of neurotrauma
          Mary Ann Liebert Inc
          1557-9042
          0897-7151
          Apr 2011
          : 28
          : 4
          Affiliations
          [1 ] Department of Neurosurgery, University of Schleswig-Holstein Medical Center, Kiel, Germany.
          Article
          10.1089/neu.2010.1652
          21265596
          c9587e29-4030-4bdb-a322-7d235c1d49f2
          History

          Comments

          Comment on this article

          scite_
          74
          2
          57
          0
          Smart Citations
          74
          2
          57
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content85

          Cited by31