8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metal–Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references442

          • Record: found
          • Abstract: found
          • Article: not found

          Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.

          Two organolead halide perovskite nanocrystals, CH(3)NH(3)PbBr(3) and CH(3)NH(3)PbI(3), were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO(2) films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH(3)NH(3)PbI(3)-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH(3)NH(3)PbBr(3)-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The chemistry and applications of metal-organic frameworks.

            Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrical energy storage for the grid: a battery of choices.

              The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
                Bookmark

                Author and article information

                Contributors
                Journal
                Electrochemical Energy Reviews
                Electrochem. Energ. Rev.
                Springer Science and Business Media LLC
                2520-8489
                2520-8136
                March 2019
                November 17 2018
                March 2019
                : 2
                : 1
                : 29-104
                Article
                10.1007/s41918-018-0024-x
                c955364e-2b60-445e-98ca-d8949b107097
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article