3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oral susceptibility of aedine and culicine mosquitoes (Diptera: Culicidae) to Batai Orthobunyavirus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A number of zoonotic mosquito-borne viruses have emerged in Europe in recent decades. Batai virus (BATV), a member of the genus Orthobunyavirus, is one example of a relatively newly emerged mosquito-borne virus, having been detected in mosquitoes and livestock. We conducted vector competency studies on three mosquito species at a low temperature to assess whether Aedes and Culex mosquito species are susceptible to infection with BATV.

          Methods

          Colonised lines of Aedes aegypti and Culex pipiens and a wild-caught species, Aedes detritus, were orally inoculated with BATV strain 53.2, originally isolated from mosquitoes trapped in Germany in 2009. Groups of blood-fed female mosquitoes were maintained at 20 °C for 7 or 14 days. Individual mosquitoes were screened for the presence of BATV in body, leg and saliva samples for evidence of infection, dissemination and transmission, respectively. BATV RNA was detected by reverse transcription-PCR, and positive results confirmed by virus isolation in Vero cells.

          Results

          Aedes detritus was highly susceptible to BATV, with an infection prevalence of ≥ 80% at both measurement time points. Disseminated infections were recorded in 30.7–41.6% of Ae. detritus, and evidence of virus transmission with BATV in saliva samples ( n = 1, days post-infection: 14) was observed. Relatively lower rates of infection for Ae. aegypti and Cx. pipiens were observed, with no evidence of virus dissemination or transmission at either time point.

          Conclusions

          This study shows that Ae. detritus may be a competent vector for BATV at 20 °C, whereas Ae. aegypti and Cx. pipiens were not competent. Critically, the extrinsic incubation period appears to be ≤  7 days for Ae. detritus, which may increase the onward transmissibility potential of BATV in these populations.

          Graphical Abstract

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Public health significance of invasive mosquitoes in Europe.

          There are currently five invasive Aedes mosquito species known to be established in Europe, namely Aedes albopictus, Aedes aegypti, Aedes japonicus, Aedes atropalpus and Aedes koreicus. Aedes albopictus and Aedes aegypti are the incriminated vectors in the recent outbreaks of chikungunya and dengue fever in Europe. However, both laboratory experiments and field observations indicate that these invasive mosquitoes have a potential to also transmit other pathogens of public health importance. Increasing travel and pathogen introduction, expansion of vector distribution, and both environmental and climatic changes are likely to raise the risk of pathogen transmission by these invasive Aedes mosquitoes. Their vector status and their involvement in pathogen transmission are dynamic processes that shape the future of mosquito-borne disease epidemiology in Europe. Beside vector surveillance, enhanced disease surveillance will enable the early detection of cases and the prompt implementation of control measures. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mosquito-borne viruses in Europe.

            The number of mosquito-borne viruses ('moboviruses') occurring in Europe since the twentieth century now stands at ten; they belong to three families-Togaviridae (Sindbis, Chikungunya), Flaviviridae (West Nile, Usutu, Dengue), and Bunyaviridae (Batai, Tahyna, Snowshoe hare, Inkoo, Lednice). Several of them play a definite role in human or animal pathology (Sindbis, Chikungunya, Dengue, West Nile, Tahyna). Mobovirus outbreaks are strictly determined by the presence and/or import of particular competent vectors of the disease. Ecological variables affect moboviruses considerably; the main factors are population density of mosquito vectors and their vertebrate hosts, intense summer precipitations or floods, summer temperatures and drought, and presence of appropriate habitats, e.g., wetlands, small water pools, or intravillan sewage systems. A surveillance for moboviruses and the diseases they cause in Europe is recommendable, because the cases may often pass unnoticed or misdiagnosed not only in free-living vertebrates but also in domestic animals and even in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ngari virus is a Bunyamwera virus reassortant that can be associated with large outbreaks of hemorrhagic fever in Africa.

              Two isolates of a virus of the genus Orthobunyavirus (family Bunyaviridae) were obtained from hemorrhagic fever cases during a large disease outbreak in East Africa in 1997 and 1998. Sequence analysis of regions of the three genomic RNA segments of the virus (provisionally referred to as Garissa virus) suggested that it was a genetic reassortant virus with S and L segments derived from Bunyamwera virus but an M segment from an unidentified virus of the genus Orthobunyavirus. While high genetic diversity (52%) was revealed by analysis of virus M segment nucleotide sequences obtained from 21 members of the genus Orthobunyavirus, the Garissa and Ngari virus M segments were almost identical. Surprisingly, the Ngari virus L and S segments showed high sequence identity with those of Bunyamwera virus, showing that Garissa virus is an isolate of Ngari virus, which in turn is a Bunyamwera virus reassortant. Ngari virus should be considered when investigating hemorrhagic fever outbreaks throughout sub-Saharan Africa.
                Bookmark

                Author and article information

                Contributors
                luis.hernandez-triana@apha.gov.uk
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                3 November 2021
                3 November 2021
                2021
                : 14
                : 566
                Affiliations
                [1 ]GRID grid.422685.f, ISNI 0000 0004 1765 422X, Vector-Borne Diseases Research Team, Virology Department, , Animal and Plant Health Agency, ; Woodham Lane, Addlestone, KT15 3NB Surrey UK
                [2 ]GRID grid.271308.f, ISNI 0000 0004 5909 016X, Microbiology Services Division, , Public Health England, ; Porton Down, Wiltshire, UK
                Author information
                http://orcid.org/0000-0001-7058-8848
                https://orcid.org/0000-0003-0106-2185
                Article
                5070
                10.1186/s13071-021-05070-0
                8567561
                34732254
                c9534112-0f40-421f-8895-2f152f7c47b7
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 31 August 2021
                : 15 October 2021
                Categories
                Short Report
                Custom metadata
                © The Author(s) 2021

                Parasitology
                batai virus,vector competence,aedes,culex,emerging infectious diseases,zoonosis
                Parasitology
                batai virus, vector competence, aedes, culex, emerging infectious diseases, zoonosis

                Comments

                Comment on this article