34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of human glioblastoma cell death by combined treatment of cannabidiol, γ-radiation and small molecule inhibitors of cell signaling pathways

      research-article
      1 , 1 , 1
      Oncotarget
      Impact Journals LLC
      glioblastoma, cannabidiol, γ-radiation, apoptosis, MAPK p38

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. The challenging problem in cancer treatment is to find a way to upregulate radiosensitivity of GBM while protecting neurons and neural stem/progenitor cells in the brain. The goal of the present study was upregulation of the cytotoxic effect of γ-irradiation in GBM by non-psychotropic and non-toxic cannabinoid, cannabidiol (CBD). We emphasized three main aspects of signaling mechanisms induced by CBD treatment (alone or in combination with γ-irradiation) in human GBM that govern cell death: 1) CBD significantly upregulated the active (phosphorylated) JNK1/2 and MAPK p38 levels with the subsequent downregulation of the active phospho-ERK1/2 and phospho-AKT1 levels. MAPK p38 was one of the main drivers of CBD-induced cell death, while death levels after combined treatment of CBD and radiation were dependent on both MAPK p38 and JNK. Both MAPK p38 and JNK regulate the endogenous TRAIL expression. 2) NF-κB p65-P(Ser536) was not the main target of CBD treatment and this transcription factor was found at high levels in CBD-treated GBM cells. Additional suppression of p65-P(Ser536) levels using specific small molecule inhibitors significantly increased CBD-induced apoptosis. 3) CBD treatment substantially upregulated TNF/TNFR1 and TRAIL/TRAIL-R2 signaling by modulation of both ligand and receptor levels followed by apoptosis. Our results demonstrate that radiation-induced death in GBM could be enhanced by CBD-mediated signaling in concert with its marginal effects for neural stem/progenitor cells and astrocytes. It will allow selecting efficient targets for sensitization of GBM and overcoming cancer therapy-induced severe adverse sequelae.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          NF-kappaB in cancer: from innocent bystander to major culprit.

          Nuclear factor of kappaB (NF-kappaB) is a sequence-specific transcription factor that is known to be involved in the inflammatory and innate immune responses. Although the importance of NF-KB in immunity is undisputed, recent evidence indicates that NF-kappaB and the signalling pathways that are involved in its activation are also important for tumour development. NF-kappaB should therefore receive as much attention from cancer researchers as it has already from immunologists.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway.

            Stimulation of death receptors by agonists such as FasL and TNFalpha activates apoptotic cell death in apoptotic-competent conditions or a type of necrotic cell death dependent on RIP1 kinase, termed necroptosis, in apoptotic-deficient conditions. In a genome-wide siRNA screen for regulators of necroptosis, we identify a set of 432 genes that regulate necroptosis, a subset of 32 genes that act downstream and/or as regulators of RIP1 kinase, 32 genes required for death-receptor-mediated apoptosis, and 7 genes involved in both necroptosis and apoptosis. We show that the expression of subsets of the 432 genes is enriched in the immune and nervous systems, and cellular sensitivity to necroptosis is regulated by an extensive signaling network mediating innate immunity. Interestingly, Bmf, a BH3-only Bcl-2 family member, is required for death-receptor-induced necroptosis. Our study defines a cellular signaling network that regulates necroptosis and the molecular bifurcation that controls apoptosis and necroptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Irradiation induces neural precursor-cell dysfunction.

              In both pediatric and adult patients, cranial radiation therapy causes a debilitating cognitive decline that is poorly understood and currently untreatable. This decline is characterized by hippocampal dysfunction, and seems to involve a radiation-induced decrease in postnatal hippocampal neurogenesis. Here we show that the deficit in neurogenesis reflects alterations in the microenvironment that regulates progenitor-cell fate, as well as a defect in the proliferative capacity of the neural progenitor-cell population. Not only is hippocampal neurogenesis ablated, but the remaining neural precursors adopt glial fates and transplants of non-irradiated neural precursor cells fail to differentiate into neurons in the irradiated hippocampus. The inhibition of neurogenesis is accompanied by marked alterations in the neurogenic microenvironment, including disruption of the microvascular angiogenesis associated with adult neurogenesis and a marked increase in the number and activation status of microglia within the neurogenic zone. These findings provide clear targets for future therapeutic interventions.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                26 September 2017
                27 May 2017
                : 8
                : 43
                : 74068-74095
                Affiliations
                1 Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
                Author notes
                Correspondence to: Vladimir N. Ivanov, vni3@ 123456cumc.columbia.edu
                Article
                18240
                10.18632/oncotarget.18240
                5650324
                29088769
                c9499b17-dd85-46a0-b31a-1d26209005cb
                Copyright: © 2017 Ivanov et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 October 2016
                : 13 May 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                glioblastoma,cannabidiol,γ-radiation,apoptosis,mapk p38
                Oncology & Radiotherapy
                glioblastoma, cannabidiol, γ-radiation, apoptosis, mapk p38

                Comments

                Comment on this article