1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Capn4 contributes to tumor invasion and metastasis in gastric cancer via activation of the Wnt/β-catenin/MMP9 signalling pathways

      , , , , , ,
      Experimental Cell Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The basics of epithelial-mesenchymal transition.

          The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The calpain system.

            The calpain system originally comprised three molecules: two Ca2+-dependent proteases, mu-calpain and m-calpain, and a third polypeptide, calpastatin, whose only known function is to inhibit the two calpains. Both mu- and m-calpain are heterodimers containing an identical 28-kDa subunit and an 80-kDa subunit that shares 55-65% sequence homology between the two proteases. The crystallographic structure of m-calpain reveals six "domains" in the 80-kDa subunit: 1). a 19-amino acid NH2-terminal sequence; 2). and 3). two domains that constitute the active site, IIa and IIb; 4). domain III; 5). an 18-amino acid extended sequence linking domain III to domain IV; and 6). domain IV, which resembles the penta EF-hand family of polypeptides. The single calpastatin gene can produce eight or more calpastatin polypeptides ranging from 17 to 85 kDa by use of different promoters and alternative splicing events. The physiological significance of these different calpastatins is unclear, although all bind to three different places on the calpain molecule; binding to at least two of the sites is Ca2+ dependent. Since 1989, cDNA cloning has identified 12 additional mRNAs in mammals that encode polypeptides homologous to domains IIa and IIb of the 80-kDa subunit of mu- and m-calpain, and calpain-like mRNAs have been identified in other organisms. The molecules encoded by these mRNAs have not been isolated, so little is known about their properties. How calpain activity is regulated in cells is still unclear, but the calpains ostensibly participate in a variety of cellular processes including remodeling of cytoskeletal/membrane attachments, different signal transduction pathways, and apoptosis. Deregulated calpain activity following loss of Ca2+ homeostasis results in tissue damage in response to events such as myocardial infarcts, stroke, and brain trauma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer.

              The matrix metalloproteinase (MMP) family of enzymes is comprised of critically important extracellular matrix remodeling proteases whose activity has been implicated in a number of key normal and pathologic processes. The latter include tumor growth, progression, and metastasis as well as the dysregulated angiogenesis that is associated with these events. As a result, these proteases have come to represent important therapeutic and diagnostic targets for the treatment and detection of human cancers. In this review, we summarize the literature that establishes these enzymes as important clinical targets, discuss the complexity surrounding their choice as such, and chronicle the development strategies and outcomes of their clinical testing to date. The status of the MMP inhibitors currently in US Food and Drug Administration approved clinical trials is presented and reviewed. We also discuss the more recent and successful targeting of this enzyme family as diagnostic and prognostic predictors of human cancer, its status, and its stage. This analysis includes a wide variety of human cancers and a number of human sample types including tissue, plasma, serum, and urine.
                Bookmark

                Author and article information

                Journal
                Experimental Cell Research
                Experimental Cell Research
                Elsevier BV
                00144827
                October 2020
                October 2020
                : 395
                : 2
                : 112220
                Article
                10.1016/j.yexcr.2020.112220
                32777225
                c92e3d20-6ac5-422f-bac7-a8129edeab8b
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article