13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The unfolded protein response and its potential role in Huntington ´s disease elucidated by a systems biology approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Huntington ´s disease (HD) is a progressive, neurodegenerative disease with a fatal outcome. Although the disease-causing gene (huntingtin) has been known for over 20 years, the exact mechanisms leading to neuronal cell death are still controversial. One potential mechanism contributing to the massive loss of neurons observed in the brain of HD patients could be the unfolded protein response (UPR) activated by accumulation of misfolded proteins in the endoplasmic reticulum (ER). As an adaptive response to counter-balance accumulation of un- or misfolded proteins, the UPR upregulates transcription of chaperones, temporarily attenuates new translation, and activates protein degradation via the proteasome. However, persistent ER stress and an activated UPR can also cause apoptotic cell death. Although different studies have indicated a role for the UPR in HD, the evidence remains inconclusive. Here, we present extensive bioinformatic analyses that revealed UPR activation in different experimental HD models based on transcriptomic data. Accordingly, we have identified 58 genes, including RAB5A, HMGB1, CTNNB1, DNM1, TUBB, TSG101, EEF2, DYNC1H1 and SLC12A5 that provide a potential link between UPR and HD. To further elucidate the potential role of UPR as a disease-relevant process, we examined its connection to apoptosis based on molecular interaction data, and identified a set of 40 genes including ADD1, HSP90B1, IKBKB, IKBKG, RPS3A and LMNB1, which seem to be at the crossroads between these two important cellular processes.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis.

            Programmed cell death (PCD), referring to apoptosis, autophagy and programmed necrosis, is proposed to be death of a cell in any pathological format, when mediated by an intracellular program. These three forms of PCD may jointly decide the fate of cells of malignant neoplasms; apoptosis and programmed necrosis invariably contribute to cell death, whereas autophagy can play either pro-survival or pro-death roles. Recent bulk of accumulating evidence has contributed to a wealth of knowledge facilitating better understanding of cancer initiation and progression with the three distinctive types of cell death. To be able to decipher PCD signalling pathways may aid development of new targeted anti-cancer therapeutic strategies. Thus in this review, we present a brief outline of apoptosis, autophagy and programmed necrosis pathways and apoptosis-related microRNA regulation, in cancer. Taken together, understanding PCD and the complex interplay between apoptosis, autophagy and programmed necrosis may ultimately allow scientists and clinicians to harness the three types of PCD for discovery of further novel drug targets, in the future cancer treatment. © 2012 Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Defining human ERAD networks through an integrative mapping strategy

              SUMMARY Proteins that fail to correctly fold or assemble into oligomeric complexes in the endoplasmic reticulum (ER) are degraded by a ubiquitin and proteasome dependent process known as ER-associated degradation (ERAD). Although many individual components of the ERAD system have been identified, how these proteins are organised into a functional network that coordinates recognition, ubiquitination, and dislocation of substrates across the ER membrane is not well understood. We have investigated the functional organisation of the mammalian ERAD system using a systems-level strategy that integrates proteomics, functional genomics, and the transcriptional response to ER stress. This analysis supports an adaptive organisation for the mammalian ERAD machinery and reveals a number of metazoan-specific genes not previously linked to ERAD.
                Bookmark

                Author and article information

                Journal
                F1000Res
                F1000Res
                F1000Research
                F1000Research
                F1000Research (London, UK )
                2046-1402
                1 May 2015
                2015
                : 4
                : 103
                Affiliations
                [1 ]Centre for Biomedical Research, University of Algarve, Faro, 8005-139, Portugal
                [2 ]Centre of Marine Sciences, University of Algarve, Faro, 8005-139, Portugal
                [1 ]Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
                [1 ]Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA
                Author notes

                RK collected the data, performed the analysis and prepared manuscript. JGL, SM and KA collected data and wrote parts of manuscript. MF conceived the study, contributed to interpretation of the results and wrote the final version of the manuscript. All authors agreed to the final content of the manuscript.

                Competing interests: No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Competing interests: No competing interests were disclosed.

                Article
                10.12688/f1000research.6358.1
                4758378
                26949515
                c9278475-ff6b-428b-90b2-c6c930486bfa
                Copyright: © 2015 Kalathur RKR et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 April 2015
                Funding
                Funded by: CHDI Foundation
                Award ID: A-2666
                Funded by: Portuguese undação para a Ciência e a Tecnologia
                Award ID: SFRH/BPD/70718/2010
                Award ID: IF/00881/2013
                The work presented was supported by CHDI Foundation (A-2666) and by the Portuguese Fundação para a Ciência e a Tecnologia (SFRH/BPD/70718/2010 to RKK and IF/00881/2013 to MEF).
                Categories
                Research Article
                Articles
                Motor Systems
                Movement Disorders
                Neuromuscular Diseases

                unfolded protein response (upr),huntington's disease,apoptosis,upr interactome,htt interactome

                Comments

                Comment on this article