31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Establishment of a repeated social defeat stress model in female mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Numerous studies have employed repeated social defeat stress (RSDS) to study the neurobiological mechanisms of depression in rodents. An important limitation of RSDS studies to date is that they have been conducted exclusively in male mice due to the difficulty of initiating attack behavior directed toward female mice. Here, we establish a female mouse model of RSDS by inducing male aggression toward females through chemogenetic activation of the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl). We demonstrate that females susceptible to RSDS display social avoidance, anxiety-like behavior, reduction of body weight, and elevated levels of circulating interleukin 6. In contrast, a subset of mice we term resilient only display anxiety-like behaviors after RSDS. This model allows for investigation of sex differences in the neurobiological mechanisms of defeat‒induced depression‒like behaviors. A robust female social defeat model is a critical first step in the identification and development of novel therapeutic compounds to treat depression and anxiety disorders in women.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Animal models of neuropsychiatric disorders.

          Modeling of human neuropsychiatric disorders in animals is extremely challenging given the subjective nature of many symptoms, the lack of biomarkers and objective diagnostic tests, and the early state of the relevant neurobiology and genetics. Nonetheless, progress in understanding pathophysiology and in treatment development would benefit greatly from improved animal models. Here we review the current state of animal models of mental illness, with a focus on schizophrenia, depression and bipolar disorder. We argue for areas of focus that might increase the likelihood of creating more useful models, at least for some disorders, and for explicit guidelines when animal models are reported.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DREADDs for Neuroscientists.

            Bryan Roth (2016)
            To understand brain function, it is essential that we discover how cellular signaling specifies normal and pathological brain function. In this regard, chemogenetic technologies represent valuable platforms for manipulating neuronal and non-neuronal signal transduction in a cell-type-specific fashion in freely moving animals. Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic tools are now commonly used by neuroscientists to identify the circuitry and cellular signals that specify behavior, perceptions, emotions, innate drives, and motor functions in species ranging from flies to nonhuman primates. Here I provide a primer on DREADDs highlighting key technical and conceptual considerations and identify challenges for chemogenetics going forward.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress.

              Mice experiencing repeated aggression develop a long-lasting aversion to social contact, which can be normalized by chronic, but not acute, administration of antidepressant. Using viral-mediated, mesolimbic dopamine pathway-specific knockdown of brain-derived neurotrophic factor (BDNF), we showed that BDNF is required for the development of this experience-dependent social aversion. Gene profiling in the nucleus accumbens indicates that local knockdown of BDNF obliterates most of the effects of repeated aggression on gene expression within this circuit, with similar effects being produced by chronic treatment with antidepressant. These results establish an essential role for BDNF in mediating long-term neural and behavioral plasticity in response to aversive social experiences.
                Bookmark

                Author and article information

                Contributors
                scott.russo@mssm.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                9 October 2017
                9 October 2017
                2017
                : 7
                : 12838
                Affiliations
                [1 ]ISNI 0000 0001 0670 2351, GRID grid.59734.3c, Fishberg Department of Neuroscience and Friedman Brain Institute, , Icahn School of Medicine at Mount Sinai, New York, ; New York, 10029 United States
                [2 ]ISNI 0000 0001 2369 4728, GRID grid.20515.33, Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, ; Tsukuba, Ibaraki 305-8577 Japan
                [3 ]ISNI 0000 0001 2166 1519, GRID grid.134907.8, Laboratory of Neuroendocrinology, The Rockefeller University, ; New York, NY 10065 United States
                [4 ]ISNI 0000 0001 0670 2351, GRID grid.59734.3c, Department of Pharmacological Sciences and Institute for Systems Biomedicine, , Icahn School of Medicine at Mount Sinai, New York, ; New York, 10029 United States
                Author information
                http://orcid.org/0000-0001-8202-7378
                Article
                12811
                10.1038/s41598-017-12811-8
                5634448
                28993631
                c9220d14-a0e3-459c-a914-839acc057628
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 July 2017
                : 15 September 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article