48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Aspergillus nidulans MAPK Module AnSte11-Ste50-Ste7-Fus3 Controls Development and Secondary Metabolism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The sexual Fus3 MAP kinase module of yeast is highly conserved in eukaryotes and transmits external signals from the plasma membrane to the nucleus. We show here that the module of the filamentous fungus Aspergillus nidulans (An) consists of the AnFus3 MAP kinase, the upstream kinases AnSte7 and AnSte11, and the AnSte50 adaptor. The fungal MAPK module controls the coordination of fungal development and secondary metabolite production. It lacks the membrane docking yeast Ste5 scaffold homolog; but, similar to yeast, the entire MAPK module's proteins interact with each other at the plasma membrane. AnFus3 is the only subunit with the potential to enter the nucleus from the nuclear envelope. AnFus3 interacts with the conserved nuclear transcription factor AnSte12 to initiate sexual development and phosphorylates VeA, which is a major regulatory protein required for sexual development and coordinated secondary metabolite production. Our data suggest that not only Fus3, but even the entire MAPK module complex of four physically interacting proteins, can migrate from plasma membrane to nuclear envelope.

          Author Summary

          Mitogen activated protein (MAP) kinase cascades are conserved from yeast to man to transmit an external signal to the nucleus and induce an appropriate cellular response. The yeast Fus3 MAP kinase module represents a textbook paradigm for signal transduction. The pathway is activated by external sexual hormones triggering several kinases that transmit the signal at the plasma membrane to Fus3. Phosphorylated Fus3 is released from the membrane-associated module, crosses the cytoplasm, and enters the nucleus to activate transcription factors for sexual development. We describe here the Fus3 MAPK pathway of a filamentous fungus that controls sexual development as well as secondary metabolism, which are coordinated processes in filamentous fungi. Aspergillus nidulans is able to release Fus3 as a complex from the membrane. Complexes of Fus3 can include two additional kinases and an adaptor protein, and these complexes can migrate from the membrane to the nuclear envelope where only A. nidulans Fus3 can enter the nucleus to control nuclear regulators. Revealing specific functions of cellular Aspergillus Fus3 complexes in signal transduction to control fungal development and secondary metabolism will be a fascinating future task.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation.

          Networks of protein interactions coordinate cellular functions. We describe a bimolecular fluorescence complementation (BiFC) assay for determination of the locations of protein interactions in living cells. This approach is based on complementation between two nonfluorescent fragments of the yellow fluorescent protein (YFP) when they are brought together by interactions between proteins fused to each fragment. BiFC analysis was used to investigate interactions among bZIP and Rel family transcription factors. Regions outside the bZIP domains determined the locations of bZIP protein interactions. The subcellular sites of protein interactions were regulated by signaling. Cross-family interactions between bZIP and Rel proteins affected their subcellular localization and modulated transcription activation. These results attest to the general applicability of the BiFC assay for studies of protein interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism.

            Differentiation and secondary metabolism are correlated processes in fungi that respond to light. In Aspergillus nidulans, light inhibits sexual reproduction as well as secondary metabolism. We identified the heterotrimeric velvet complex VelB/VeA/LaeA connecting light-responding developmental regulation and control of secondary metabolism. VeA, which is primarily expressed in the dark, physically interacts with VelB, which is expressed during sexual development. VeA bridges VelB to the nuclear master regulator of secondary metabolism, LaeA. Deletion of either velB or veA results in defects in both sexual fruiting-body formation and the production of secondary metabolites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scaffold proteins: hubs for controlling the flow of cellular information.

              The spatial and temporal organization of molecules within a cell is critical for coordinating the many distinct activities carried out by the cell. In an increasing number of biological signaling processes, scaffold proteins have been found to play a central role in physically assembling the relevant molecular components. Although most scaffolds use a simple tethering mechanism to increase the efficiency of interaction between individual partner molecules, these proteins can also exert complex allosteric control over their partners and are themselves the target of regulation. Scaffold proteins offer a simple, flexible strategy for regulating selectivity in pathways, shaping output behaviors, and achieving new responses from preexisting signaling components. As a result, scaffold proteins have been exploited by evolution, pathogens, and cellular engineers to reshape cellular behavior.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2012
                July 2012
                19 July 2012
                : 8
                : 7
                : e1002816
                Affiliations
                [1 ]Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany
                [2 ]Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August-Universität, Göttingen, Germany
                [3 ]European Neuroscience Institute, Deutsche Forschungsgemeinschaft Center for Molecular Physiology of the Brain/Excellence Cluster 171, Göttingen, Germany
                University of California San Francisco, United States of America
                Author notes

                ¤: Current address: Department of Biotechnology, The University of Tokyo, Tokyo, Japan

                Conceived and designed the experiments: ÖB. Performed the experiments: ÖB ÖSB YLA OV J-iM SOR. Analyzed the data: ÖB SI RF GHB SOR. Contributed reagents/materials/analysis tools: SI RF GHB. Wrote the paper: ÖB SI GHB.

                Article
                PGENETICS-D-11-02521
                10.1371/journal.pgen.1002816
                3400554
                22829779
                c8afb252-5ac5-401f-969f-d6da6ab47117
                Bayram et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 November 2011
                : 22 May 2012
                Page count
                Pages: 19
                Categories
                Research Article
                Biology
                Developmental Biology
                Microbial Growth and Development
                Molecular Development
                Genetics
                Gene Expression
                Gene Function
                Molecular Genetics
                Microbiology
                Model Organisms
                Yeast and Fungal Models
                Molecular Cell Biology
                Signal Transduction
                Proteomics
                Protein Interactions

                Genetics
                Genetics

                Comments

                Comment on this article