25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Elaidic Acid on Lipid Metabolism in HepG2 Cells, Investigated by an Integrated Approach of Lipidomics, Transcriptomics and Proteomics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Trans fatty acid consumption in the human diet can cause adverse health effects, such as cardiovascular disease, which is associated with higher total cholesterol, a higher low density lipoprotein-cholesterol level and a decreased high density lipoprotein-cholesterol level. The aim of the study was to elucidate the hepatic response to the most abundant trans fatty acid in the human diet, elaidic acid, to help explain clinical findings on the relationship between trans fatty acids and cardiovascular disease. The human HepG2 cell line was used as a model to investigate the hepatic response to elaidic acid in a combined proteomic, transcriptomic and lipidomic approach. We found many of the proteins responsible for cholesterol synthesis up-regulated together with several proteins involved in the esterification and hepatic import/export of cholesterol. Furthermore, a profound remodeling of the cellular membrane occurred at the phospholipid level. Our findings contribute to the explanation on how trans fatty acids from the diet can cause modifications in plasma cholesterol levels by inducing abundance changes in several hepatic proteins and the hepatic membrane composition.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.

          The synthesis of fatty acids and cholesterol, the building blocks of membranes, is regulated by three membrane-bound transcription factors: sterol regulatory element-binding proteins (SREBP)-1a, -1c, and -2. Their function in liver has been characterized in transgenic mice that overexpress each SREBP isoform and in mice that lack all three nuclear SREBPs as a result of gene knockout of SREBP cleavage-activating protein (SCAP), a protein required for nuclear localization of SREBPs. Here, we use oligonucleotide arrays hybridized with RNA from livers of three lines of mice (transgenic for SREBP-1a, transgenic for SREBP-2, and knockout for SCAP) to identify genes that are likely to be direct targets of SREBPs in liver. A total of 1,003 genes showed statistically significant increased expression in livers of transgenic SREBP-1a mice, 505 increased in livers of transgenic SREBP-2 mice, and 343 showed decreased expression in Scap-/- livers. A subset of 33 genes met the stringent combinatorial criteria of induction in both SREBP transgenics and decreased expression in SCAP-deficient mice. Of these 33 genes, 13 were previously identified as direct targets of SREBP action. Of the remaining 20 genes, 13 encode enzymes or carrier proteins involved in cholesterol metabolism, 3 participate in fatty acid metabolism, and 4 have no known connection to lipid metabolism. Through application of stringent combinatorial criteria, the transgenic/knockout approach allows identification of genes whose activities are likely to be controlled directly by one family of transcription factors, in this case the SREBPs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme.

            Mg(2+)-dependent phosphatidate (PA) phosphatase (3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) catalyzes the dephosphorylation of PA to yield diacylglycerol and P(i). In this work, we identified the Saccharomyces cerevisiae PAH1 (previously known as SMP2) gene that encodes Mg(2+)-dependent PA phosphatase using amino acid sequence information derived from a purified preparation of the enzyme (Lin, Y.-P., and Carman, G. M. (1989) J. Biol. Chem. 264, 8641-8645). Overexpression of PAH1 in S. cerevisiae directed elevated levels of Mg(2+)-dependent PA phosphatase activity, whereas the pah1Delta mutation caused reduced levels of enzyme activity. Heterologous expression of PAH1 in Escherichia coli confirmed that Pah1p is a Mg(2+)-dependent PA phosphatase enzyme and showed that its enzymological properties were very similar to those of the enzyme purified from S. cerevisiae. The PAH1-encoded enzyme activity was associated with both the membrane and cytosolic fractions of the cell, and the membrane-bound form of the enzyme was salt-extractable. Lipid analysis showed that mutants lacking PAH1 accumulated PA and had reduced amounts of diacylglycerol and its derivative triacylglycerol.ThePAH1-encoded Mg(2+)-dependent PA phosphatase shows homology to mammalian lipin, a fat-regulating protein whose molecular function is unknown. Heterologous expression of human LPIN1 in E. coli showed that lipin 1 is also a Mg(2+)-dependent PA phosphatase enzyme.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Consequences of cellular cholesterol accumulation: basic concepts and physiological implications.

              Ira Tabas (2002)
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                13 September 2013
                : 8
                : 9
                : e74283
                Affiliations
                [1 ]Interdisciplinary NanoScience Center, iNANO, Aarhus University, Aarhus, Denmark
                [2 ]Center for insoluble protein structure, InSPIN, at the Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
                [3 ]Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
                [4 ]I.S.O.F. — Consiglio Nazionale delle Ricerche, Bologna, Italy
                [5 ]Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
                University of Basque Country, Spain
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JJE LVN TPK. Performed the experiments: LVN TPK CY. Analyzed the data: LVN TPK CY. Contributed reagents/materials/analysis tools: ONJ CF CC JJE. Wrote the manuscript: LVN TPK JJE.

                Article
                PONE-D-13-15629
                10.1371/journal.pone.0074283
                3772929
                24058537
                c8a3638f-fbab-4e1a-95be-4dc98b1219b7
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 April 2013
                : 16 July 2013
                Funding
                The authors have no funding or support to report.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article