1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endothelial Specific Deletion of Autotaxin Improves Stroke Outcomes

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autotaxin (ATX) is an extracellular secretory enzyme (lysophospholipase D) that catalyzes the hydrolysis of lysophosphatidyl choline to lysophosphatidic acid (LPA). The ATX–LPA axis is a well-known pathological mediator of liver fibrosis, metastasis in cancer, pulmonary fibrosis, atherosclerosis, and neurodegenerative diseases. Additionally, it is believed that LPA may cause vascular permeability. In ischemic stroke, vascular permeability leading to hemorrhagic transformation is a major limitation for therapies and an obstacle to stroke management. Therefore, in this study, we generated an endothelial-specific ATX deletion in mice (ERT2 ATX−/−) to observe stroke outcomes in a mouse stroke model to analyze the role of endothelial ATX. The AR2 probe and Evans Blue staining were used to perform the ATX activity and vascular permeability assays, respectively. Laser speckle imaging was used to observe the cerebral blood flow following stroke. In this study, we observed that stroke outcomes were alleviated with the endothelial deletion of ATX. Permeability and infarct volume were reduced in ERT2 ATX−/− mice compared to ischemia–reperfusion (I/R)-only mice. In addition, the cerebral blood flow was retained in ERT2 ATX−/− compared to I/R mice. The outcomes in the stroke model are alleviated due to the limited LPA concentration, reduced ATX concentration, and ATX activity in ERT2 ATX−/− mice. This study suggests that endothelial-specific ATX leads to increased LPA in the brain vasculature following ischemic–reperfusion and ultimately disrupts vascular permeability, resulting in adverse stroke outcomes.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: not found
          • Article: not found

          Reversible middle cerebral artery occlusion without craniectomy in rats

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            World Stroke Organization (WSO): Global Stroke Fact Sheet 2022

            Stroke remains the second-leading cause of death and the third-leading cause of death and disability combined (as expressed by disability-adjusted life-years lost – DALYs) in the world. The estimated global cost of stroke is over US$721 billion (0.66% of the global GDP). From 1990 to 2019, the burden (in terms of the absolute number of cases) increased substantially (70.0% increase in incident strokes, 43.0% deaths from stroke, 102.0% prevalent strokes, and 143.0% DALYs), with the bulk of the global stroke burden (86.0% of deaths and 89.0% of DALYs) residing in lower-income and lower-middle-income countries (LMIC). This World Stroke Organisation (WSO) Global Stroke Fact Sheet 2022 provides the most updated information that can be used to inform communication with all internal and external stakeholders; all statistics have been reviewed and approved for use by the WSO Executive Committee as well as leaders from the Global Burden of Disease research group.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase.

              We purified human plasma lysophospholipase D that produces physiologically active lysophosphatidic acid and showed that it is a soluble form of autotaxin, an ecto-nucleotide pyrophosphatase/phosphodiesterase, originally found as a tumor cell motility-stimulating factor. Its lower K(m) value for a lysophosphatidylcholine than that for a synthetic substrate of nucleotide suggests that lysophosphatidylcholine is a more likely physiological substrate for autotaxin and that its predicted physiological and pathophysiological functions could be mediated by its activity to produce lysophosphate acid, an intercellular mediator. Recombinant autotaxin was found to have lysophospholipase D activity; its substrate specificity and metal ion requirement were the same as those of the purified plasma enzyme. The activity of lysophospholipase D for exogenous lysophosphatidylcholine in human serum was found to increase in normal pregnant women at the third trimester of pregnancy and to a higher extent in patients in threatened preterm delivery, suggesting its roles in induction of parturition.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CELLC6
                Cells
                Cells
                MDPI AG
                2073-4409
                February 2023
                February 03 2023
                : 12
                : 3
                : 511
                Article
                10.3390/cells12030511
                c8570036-1423-4607-8f5f-c14e57bcea82
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article