18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sorafenib-induced defective autophagy promotes cell death by necroptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5−/− cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Discovery of Atg5/Atg7-independent alternative macroautophagy.

          Macroautophagy is a process that leads to the bulk degradation of subcellular constituents by producing autophagosomes/autolysosomes. It is believed that Atg5 (ref. 4) and Atg7 (ref. 5) are essential genes for mammalian macroautophagy. Here we show, however, that mouse cells lacking Atg5 or Atg7 can still form autophagosomes/autolysosomes and perform autophagy-mediated protein degradation when subjected to certain stressors. Although lipidation of the microtubule-associated protein light chain 3 (LC3, also known as Map1lc3a) to form LC3-II is generally considered to be a good indicator of macroautophagy, it did not occur during the Atg5/Atg7-independent alternative process of macroautophagy. We also found that this alternative process of macroautophagy was regulated by several autophagic proteins, including Unc-51-like kinase 1 (Ulk1) and beclin 1. Unlike conventional macroautophagy, autophagosomes seemed to be generated in a Rab9-dependent manner by the fusion of isolation membranes with vesicles derived from the trans-Golgi and late endosomes. In vivo, Atg5-independent alternative macroautophagy was detected in several embryonic tissues. It also had a function in clearing mitochondria during erythroid maturation. These results indicate that mammalian macroautophagy can occur through at least two different pathways: an Atg5/Atg7-dependent conventional pathway and an Atg5/Atg7-independent alternative pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia.

            A long-standing controversy is whether autophagy is a bona fide cause of mammalian cell death. We used a cell-penetrating autophagy-inducing peptide, Tat-Beclin 1, derived from the autophagy protein Beclin 1, to investigate whether high levels of autophagy result in cell death by autophagy. Here we show that Tat-Beclin 1 induces dose-dependent death that is blocked by pharmacological or genetic inhibition of autophagy, but not of apoptosis or necroptosis. This death, termed "autosis," has unique morphological features, including increased autophagosomes/autolysosomes and nuclear convolution at early stages, and focal swelling of the perinuclear space at late stages. We also observed autotic death in cells during stress conditions, including in a subpopulation of nutrient-starved cells in vitro and in hippocampal neurons of neonatal rats subjected to cerebral hypoxia-ischemia in vivo. A chemical screen of ~5,000 known bioactive compounds revealed that cardiac glycosides, antagonists of Na(+),K(+)-ATPase, inhibit autotic cell death in vitro and in vivo. Furthermore, genetic knockdown of the Na(+),K(+)-ATPase α1 subunit blocks peptide and starvation-induced autosis in vitro. Thus, we have identified a unique form of autophagy-dependent cell death, a Food and Drug Administration-approved class of compounds that inhibit such death, and a crucial role for Na(+),K(+)-ATPase in its regulation. These findings have implications for understanding how cells die during certain stress conditions and how such cell death might be prevented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes.

              Obatoclax (GX15-070), a small-molecule inhibitor of antiapoptotic Bcl-2 proteins, has been reported to trigger cell death via autophagy. However, the underlying molecular mechanisms have remained elusive. Here, we identify GX15-070-stimulated assembly of the necrosome on autophagosomal membranes as a key event that connects GX15-070-stimulated autophagy to necroptosis. GX15-070 predominately induces a non-apoptotic form of cell death in rhabdomyosarcoma cells, as evident by lack of typical apoptotic features such as DNA fragmentation or caspase activation and by insensitivity to the broad-range caspase inhibitor zVAD.fmk. Instead, GX15-070 triggers massive accumulation of autophagosomes, which are required for GX15-070-induced cell death, as blockade of autophagosome formation by silencing of Atg5 or Atg7 abolishes GX15-070-mediated cell death. Co-immunoprecipitation studies reveal that GX15-070 stimulates the interaction of Atg5, a constituent of autophagosomal membranes, with components of the necrosome such as FADD, RIP1 and RIP3. This GX15-070-induced assembly of the necrosome on autophagosomes occurs in a Atg5-dependent manner, as knockdown of Atg5 abrogates formation of this complex. RIP1 is necessary for GX15-070-induced cell death, as both genetic and pharmacological inhibition of RIP1 by shRNA-mediated knockdown or by the RIP1 inhibitor necrostatin-1 blocks GX15-070-induced cell death. Similarly, RIP3 knockdown rescues GX15-070-mediated cell death and suppression of clonogenic survival. Interestingly, RIP1 or RIP3 silencing has no effect on GX15-070-stimulated autophagosome formation, underlining that RIP1 and RIP3 mediate cell death downstream of autophagy induction. Of note, GX15-070 significantly suppresses tumor growth in a RIP1-dependent manner in the chorioallantoic membrane model in vivo. In conclusion, GX15-070 triggers necroptosis by promoting the assembly of the necrosome on autophagosomes. These findings provide novel insights into the molecular mechanisms of GX15-070-induced non-apoptotic cell death.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                10 November 2015
                22 September 2015
                : 6
                : 35
                : 37066-37082
                Affiliations
                1 Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet and University Hospital, Stockholm, Sweden
                2 Department of Medicine, School of Health Sciences, University of Athens, Athens, Greece
                3 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
                4 Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Stockholm, Sweden
                Author notes
                Correspondence to: Theocharis Panaretakis, theoharis.panaretakis@ 123456ki.se
                Article
                10.18632/oncotarget.5797
                4741916
                26416459
                c84993e1-6822-425a-8636-9f0643c4fcad
                Copyright: © 2015 Kharaziha et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 July 2015
                : 29 August 2015
                Categories
                Research paper: Autophagy and Cell Death

                Oncology & Radiotherapy
                prostate cancer,tyrosine kinase inhibitor,autophagy,atg5,necroptosis
                Oncology & Radiotherapy
                prostate cancer, tyrosine kinase inhibitor, autophagy, atg5, necroptosis

                Comments

                Comment on this article