40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SCOP2 prototype: a new approach to protein structure mining

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a prototype of a new structural classification of proteins, SCOP2 ( http://scop2.mrc-lmb.cam.ac.uk/), that we have developed recently. SCOP2 is a successor to the Structural Classification of Proteins (SCOP, http://scop.mrc-lmb.cam.ac.uk/scop/) database. Similarly to SCOP, the main focus of SCOP2 is to organize structurally characterized proteins according to their structural and evolutionary relationships. SCOP2 was designed to provide a more advanced framework for protein structure annotation and classification. It defines a new approach to the classification of proteins that is essentially different from SCOP, but retains its best features. The SCOP2 classification is described in terms of a directed acyclic graph in which nodes form a complex network of many-to-many relationships and are represented by a region of protein structure and sequence. The new classification project is expected to ensure new advances in the field and open new areas of research.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Data growth and its impact on the SCOP database: new developments

          The Structural Classification of Proteins (SCOP) database is a comprehensive ordering of all proteins of known structure, according to their evolutionary and structural relationships. The SCOP hierarchy comprises the following levels: Species, Protein, Family, Superfamily, Fold and Class. While keeping the original classification scheme intact, we have changed the production of SCOP in order to cope with a rapid growth of new structural data and to facilitate the discovery of new protein relationships. We describe ongoing developments and new features implemented in SCOP. A new update protocol supports batch classification of new protein structures by their detected relationships at Family and Superfamily levels in contrast to our previous sequential handling of new structural data by release date. We introduce pre-SCOP, a preview of the SCOP developmental version that enables earlier access to the information on new relationships. We also discuss the impact of worldwide Structural Genomics initiatives, which are producing new protein structures at an increasing rate, on the rates of discovery and growth of protein families and superfamilies. SCOP can be accessed at http://scop.mrc-lmb.cam.ac.uk/scop.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CATH--a hierarchic classification of protein domain structures.

            Protein evolution gives rise to families of structurally related proteins, within which sequence identities can be extremely low. As a result, structure-based classifications can be effective at identifying unanticipated relationships in known structures and in optimal cases function can also be assigned. The ever increasing number of known protein structures is too large to classify all proteins manually, therefore, automatic methods are needed for fast evaluation of protein structures. We present a semi-automatic procedure for deriving a novel hierarchical classification of protein domain structures (CATH). The four main levels of our classification are protein class (C), architecture (A), topology (T) and homologous superfamily (H). Class is the simplest level, and it essentially describes the secondary structure composition of each domain. In contrast, architecture summarises the shape revealed by the orientations of the secondary structure units, such as barrels and sandwiches. At the topology level, sequential connectivity is considered, such that members of the same architecture might have quite different topologies. When structures belonging to the same T-level have suitably high similarities combined with similar functions, the proteins are assumed to be evolutionarily related and put into the same homologous superfamily. Analysis of the structural families generated by CATH reveals the prominent features of protein structure space. We find that nearly a third of the homologous superfamilies (H-levels) belong to ten major T-levels, which we call superfolds, and furthermore that nearly two-thirds of these H-levels cluster into nine simple architectures. A database of well-characterised protein structure families, such as CATH, will facilitate the assignment of structure-function/evolution relationships to both known and newly determined protein structures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The RCSB Protein Data Bank: new resources for research and education

              The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) develops tools and resources that provide a structural view of biology for research and education. The RCSB PDB web site (http://www.rcsb.org) uses the curated 3D macromolecular data contained in the PDB archive to offer unique methods to access, report and visualize data. Recent activities have focused on improving methods for simple and complex searches of PDB data, creating specialized access to chemical component data and providing domain-based structural alignments. New educational resources are offered at the PDB-101 educational view of the main web site such as Author Profiles that display a researcher’s PDB entries in a timeline. To promote different kinds of access to the RCSB PDB, Web Services have been expanded, and an RCSB PDB Mobile application for the iPhone/iPad has been released. These improvements enable new opportunities for analyzing and understanding structure data.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                January 2014
                29 November 2013
                29 November 2013
                : 42
                : D1 , Database issue
                : D310-D314
                Affiliations
                1MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK and 2European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
                Author notes
                *To whom correspondence should be addressed. Tel: +44 1223 267067; Fax: +44 1223 268305; Email: agm@ 123456mrc-lmb.cam.ac.uk
                Correspondence may also be addressed to Antonina Andreeva. Tel: +44 1223 267811; Fax: +44 1223 268305; Email: tony@ 123456mrc-lmb.cam.ac.uk
                Article
                gkt1242
                10.1093/nar/gkt1242
                3964979
                24293656
                c83fb38f-ab4d-42ae-a27a-61e2279b5c62
                © The Author(s) 2013. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 November 2013
                : 8 November 2013
                Page count
                Pages: 5
                Categories
                II. Protein sequence and structure, motifs and domains
                Custom metadata
                1 January 2014

                Genetics
                Genetics

                Comments

                Comment on this article