24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High producing dairy cows generally receive in the diet up to 5–6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.

          Related collections

          Most cited references233

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of diet on short-term regulation of feed intake by lactating dairy cattle.

          M Allen (2000)
          Physical and chemical characteristics of dietary ingredients and their interactions can have a large effect on dry matter intake (DMI) of lactating cows. Physical limitations caused by distension of the reticulo-rumen or other compartments of the gastrointestinal tract often limit DMI of high producing cows or cows fed high forage diets. Fermentation acids also limit DMI from a combination of increased osmolality in the reticulo-rumen and specific effects of propionate, although the mechanisms are not clear. The specific physical and chemical characteristics of diets that can affect DMI include fiber content, ease of hydrolysis of starch and fiber, particle size, particle fragility, silage fermentation products, concentration and characteristics of fat, and the amount and ruminal degradation of protein. Site of starch digestion affects the form of metabolic fuel absorbed, which can affect DMI because absorbed propionate appears to be more hypophagic than lactate or absorbed glucose. Dry matter intake is likely determined by integration of signals in brain satiety centers. Difficulty in measurement and extensive interactions among the variables make it challenging to account for dietary effects when predicting DMI. However, a greater understanding of the mechanisms along with evaluation of animal responses to diet changes allows diet adjustments to be made to optimize DMI as well as to optimize allocation of diet ingredients to animals. This paper discusses some of the characteristics of dietary ingredients that should be considered when formulating diets for lactating dairy cows and when allocating feeds to different groups of animals on the farm.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases.

            Apolipoprotein (apo) E is a multifunctional protein with central roles in lipid metabolism, neurobiology, and neurodegenerative diseases. It has three major isoforms (apoE2, apoE3, and apoE4) with different effects on lipid and neuronal homeostasis. A major function of apoE is to mediate the binding of lipoproteins or lipid complexes in the plasma or interstitial fluids to specific cell-surface receptors. These receptors internalize apoE-containing lipoprotein particles; thus, apoE participates in the distribution/redistribution of lipids among various tissues and cells of the body. In addition, intracellular apoE may modulate various cellular processes physiologically or pathophysiologically, including cytoskeletal assembly and stability, mitochondrial integrity and function, and dendritic morphology and function. Elucidation of the functional domains within this protein and of the three-dimensional structure of the major isoforms of apoE has contributed significantly to our understanding of its physiological and pathophysiological roles at a molecular level. It is likely that apoE, with its multiple cellular origins and multiple structural and biophysical properties, is involved widely in processes of lipid metabolism and neurobiology, possibly encompassing a variety of disorders of neuronal repair, remodeling, and degeneration by interacting with different factors through various pathways. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance.

              Inflammation is a condition which contributes to a range of human diseases. It involves a multitude of cell types, chemical mediators, and interactions. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are omega-3 (n-3) fatty acids found in oily fish and fish oil supplements. These fatty acids are able to partly inhibit a number of aspects of inflammation including leukocyte chemotaxis, adhesion molecule expression and leukocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid, production of inflammatory cytokines, and T-helper 1 lymphocyte reactivity. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of marine n-3 fatty acids include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor kappa B so reducing expression of inflammatory genes, activation of the anti-inflammatory transcription factor peroxisome proliferator activated receptor γ and binding to the G protein coupled receptor GPR120. These mechanisms are interlinked, although the full extent of this is not yet elucidated. Animal experiments demonstrate benefit from marine n-3 fatty acids in models of rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and asthma. Clinical trials of fish oil in RA demonstrate benefit, but clinical trials of fish oil in IBD and asthma are inconsistent with no overall clear evidence of efficacy. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
                Bookmark

                Author and article information

                Contributors
                massimo.bionaz@oregonstate.edu
                Journal
                J Anim Sci Biotechnol
                J Anim Sci Biotechnol
                Journal of Animal Science and Biotechnology
                BioMed Central (London )
                1674-9782
                2049-1891
                16 November 2020
                16 November 2020
                2020
                : 11
                : 110
                Affiliations
                [1 ]GRID grid.4391.f, ISNI 0000 0001 2112 1969, Department of Animal and Rangeland Sciences, , Oregon State University, ; Corvallis, OR 97331 USA
                [2 ]GRID grid.5254.6, ISNI 0000 0001 0674 042X, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, , University of Copenhagen, ; Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
                Author information
                http://orcid.org/0000-0002-0674-1892
                Article
                512
                10.1186/s40104-020-00512-8
                7667790
                33292523
                c83b7d66-7dad-4307-ab92-ee557d597b97
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 22 April 2020
                : 8 September 2020
                Categories
                Review
                Custom metadata
                © The Author(s) 2020

                Animal science & Zoology
                absorption,dairy cow,dietary fatty acids,intestine,liver,metabolism,performance,transcription factors,transport

                Comments

                Comment on this article