22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Annexin A1 and the Resolution of Inflammation: Modulation of Neutrophil Recruitment, Apoptosis, and Clearance

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neutrophils (also named polymorphonuclear leukocytes or PMN) are essential components of the immune system, rapidly recruited to sites of inflammation, providing the first line of defense against invading pathogens. Since neutrophils can also cause tissue damage, their fine-tuned regulation at the inflammatory site is required for proper resolution of inflammation. Annexin A1 (AnxA1), also known as lipocortin-1, is an endogenous glucocorticoid-regulated protein, which is able to counterregulate the inflammatory events restoring homeostasis. AnxA1 and its mimetic peptides inhibit neutrophil tissue accumulation by reducing leukocyte infiltration and activating neutrophil apoptosis. AnxA1 also promotes monocyte recruitment and clearance of apoptotic leukocytes by macrophages. More recently, some evidence has suggested the ability of AnxA1 to induce macrophage reprogramming toward a resolving phenotype, resulting in reduced production of proinflammatory cytokines and increased release of immunosuppressive and proresolving molecules. The combination of these mechanisms results in an effective resolution of inflammation, pointing to AnxA1 as a promising tool for the development of new therapeutic strategies to treat inflammatory diseases.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Annexin A1 and glucocorticoids as effectors of the resolution of inflammation.

          Glucocorticoids are widely used for the management of inflammatory diseases. Their clinical application stems from our understanding of the inhibitory effect of the corticosteroid hormone cortisol on several components of the immune system. Endogenous and exogenous glucocorticoids mediate their multiple anti-inflammatory effects through many effector molecules. In this Opinion article, we focus on the role of one such effector molecule, annexin A1, and summarize the recent studies that provide insight into its molecular and pharmacological functions in immune responses. In addition, we propose a model in which glucocorticoids regulate the expression and function of annexin A1 in opposing ways in innate and adaptive immune cells to mediate the resolution of inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neutrophil function in inflammation and inflammatory diseases.

            In inflammatory conditions such as RA, the neutrophil has tended to be dismissed as a short-lived, terminally differentiated, irrelevant bystander cell. However, this is clearly not the case. A better understanding of the complex heterogeneous pathways and processes that constitute RA, in parallel with a more sophisticated knowledge of neutrophil biology has identified many potential roles for these cells in the persistence of inflammation and progression of joint damage, which should not be underestimated. Not only are neutrophils found in high numbers within the rheumatoid joint, both in synovial tissue and in joint fluid, they have a huge potential to directly inflict damage to tissue, bone and cartilage via the secretion of proteases and toxic oxygen metabolites, as well as driving inflammation through antigen presentation and secretion of cytokines, chemokines, prostaglandins and leucotrienes. Drugs already used to treat RA down-regulate many neutrophil functions, including migration to the joint, degranulation and production of inflammatory mediators, and these cells should be considered as important targets for the development of new therapies in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome.

              Acute inflammatory responses are protective, yet without timely resolution can lead to chronic inflammation and organ fibrosis. A systems approach to investigate self-limited (self-resolving) inflammatory exudates in mice and structural elucidation uncovered novel resolution phase mediators in vivo that stimulate endogenous resolution mechanisms in inflammation. Resolving inflammatory exudates and human leukocytes utilize DHA and other n-3 EFA to produce three structurally distinct families of potent di- and trihydroxy-containing products, with several stereospecific potent mediators in each family. Given their potent and stereoselective picogram actions, specific members of these new families of mediators from the DHA metabolome were named D-series resolvins (Resolvin D1 to Resolvin D6), protectins (including protectin D1-neuroprotectin D1), and maresins (MaR1 and MaR2). In this review, we focus on a) biosynthesis of protectins and maresins as anti-inflammatory-pro-resolving mediators; b) their complete stereochemical assignments and actions in vivo in disease models. Each pathway involves the biosynthesis of epoxide-containing intermediates produced from hydroperoxy-containing precursors from human leukocytes and within exudates. Also, aspirin triggers an endogenous DHA metabolome that biosynthesizes potent products in inflammatory exudates and human leukocytes, namely aspirin-triggered Neuroprotectin D1/Protectin D1 [AT-(NPD1/PD1)]. Identification and structural elucidation of these new families of bioactive mediators in resolution has opened the possibility of diverse patho-physiologic actions in several processes including infection, inflammatory pain, tissue regeneration, neuroprotection-neurodegenerative disorders, wound healing, and others. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
                Bookmark

                Author and article information

                Journal
                J Immunol Res
                J Immunol Res
                JIR
                Journal of Immunology Research
                Hindawi Publishing Corporation
                2314-8861
                2314-7156
                2016
                13 January 2016
                : 2016
                : 8239258
                Affiliations
                1Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
                2Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
                3Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
                4Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
                Author notes
                *Lirlândia Pires Sousa: lipsousa72@ 123456gmail.com

                Academic Editor: Nicolas Demaurex

                Article
                10.1155/2016/8239258
                4738713
                26885535
                c83b3e1d-b124-4d2a-8df3-cbd6622ab123
                Copyright © 2016 Michelle Amantéa Sugimoto et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 August 2015
                : 1 December 2015
                Categories
                Review Article

                Comments

                Comment on this article