Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicting Social Unrest Events with Hidden Markov Models Using GDELT

      , , , , ,
      Discrete Dynamics in Nature and Society
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Proactive handling of social unrest events which are common happenings in both democracies and authoritarian regimes requires that the risk of upcoming social unrest event is continuously assessed. Most existing approaches comparatively pay little attention to considering the event development stages. In this paper, we use autocoded events dataset GDELT (Global Data on Events, Location, and Tone) to build a Hidden Markov Models (HMMs) based framework to predict indicators associated with country instability. The framework utilizes the temporal burst patterns in GDELT event streams to uncover the underlying event development mechanics and formulates the social unrest event prediction as a sequence classification problem based on Bayes decision. Extensive experiments with data from five countries in Southeast Asia demonstrate the effectiveness of this framework, which outperforms the logistic regression method by 7% to 27% and the baseline method 34% to 62% for various countries.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Twitter mood predicts the stock market

          Behavioral economics tells us that emotions can profoundly affect individual behavior and decision-making. Does this also apply to societies at large, i.e., can societies experience mood states that affect their collective decision making? By extension is the public mood correlated or even predictive of economic indicators? Here we investigate whether measurements of collective mood states derived from large-scale Twitter feeds are correlated to the value of the Dow Jones Industrial Average (DJIA) over time. We analyze the text content of daily Twitter feeds by two mood tracking tools, namely OpinionFinder that measures positive vs. negative mood and Google-Profile of Mood States (GPOMS) that measures mood in terms of 6 dimensions (Calm, Alert, Sure, Vital, Kind, and Happy). We cross-validate the resulting mood time series by comparing their ability to detect the public's response to the presidential election and Thanksgiving day in 2008. A Granger causality analysis and a Self-Organizing Fuzzy Neural Network are then used to investigate the hypothesis that public mood states, as measured by the OpinionFinder and GPOMS mood time series, are predictive of changes in DJIA closing values. Our results indicate that the accuracy of DJIA predictions can be significantly improved by the inclusion of specific public mood dimensions but not others. We find an accuracy of 87.6% in predicting the daily up and down changes in the closing values of the DJIA and a reduction of the Mean Average Percentage Error by more than 6%.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Survey of Techniques for Event Detection in Twitter

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Crisis Early Warning and Decision Support: Contemporary Approaches and Thoughts on Future Research

                Bookmark

                Author and article information

                Journal
                Discrete Dynamics in Nature and Society
                Discrete Dynamics in Nature and Society
                Hindawi Limited
                1026-0226
                1607-887X
                2017
                2017
                : 2017
                :
                : 1-13
                Article
                10.1155/2017/8180272
                c83322f0-7332-4b6f-8395-803da96590b2
                © 2017

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article