2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beyond Dopamine Receptor Antagonism: New Targets for Schizophrenia Treatment and Prevention

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Treatment of schizophrenia (SCZ) historically relies on the use of antipsychotic drugs to treat psychosis, with all of the currently available antipsychotics acting through the antagonism of dopamine D2 receptors. Although antipsychotics reduce psychotic symptoms in many patients, they induce numerous undesirable effects and are not effective against negative and cognitive symptoms. These highlight the need to develop new drugs to treat SCZ. An advanced understanding of the circuitry of SCZ has pointed to pathological origins in the excitation/inhibition balance in regions such as the hippocampus, and restoring function in this region, particularly as a means to compensate for parvalbumin (PV) interneuron loss and resultant hippocampal hyperactivity, may be a more efficacious approach to relieve a broad range of SCZ symptoms. Other targets, such as cholinergic receptors and the trace amine-associated receptor 1 (TAAR1), have also shown some promise for the treatment of SCZ. Importantly, assessing efficacy of novel compounds must take into consideration treatment history of the patient, as preclinical studies suggest prior antipsychotic treatment may interfere with the efficacy of these novel agents. However, while novel therapeutic targets may be more effective in treating SCZ, a more effective approach would be to prevent the transition to SCZ in susceptible individuals. A focus on stress, which has been shown to be a predisposing factor in risk for SCZ, is a possible avenue that has shown promise in preclinical studies. Therefore, therapeutic approaches based on our current understanding of the circuitry of SCZ and its etiology are likely to enable development of more effective therapeutic interventions for this complex disorder.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of gamma oscillations.

          Gamma rhythms are commonly observed in many brain regions during both waking and sleep states, yet their functions and mechanisms remain a matter of debate. Here we review the cellular and synaptic mechanisms underlying gamma oscillations and outline empirical questions and controversial conceptual issues. Our main points are as follows: First, gamma-band rhythmogenesis is inextricably tied to perisomatic inhibition. Second, gamma oscillations are short-lived and typically emerge from the coordinated interaction of excitation and inhibition, which can be detected as local field potentials. Third, gamma rhythm typically concurs with irregular firing of single neurons, and the network frequency of gamma oscillations varies extensively depending on the underlying mechanism. To document gamma oscillations, efforts should be made to distinguish them from mere increases of gamma-band power and/or increased spiking activity. Fourth, the magnitude of gamma oscillation is modulated by slower rhythms. Such cross-frequency coupling may serve to couple active patches of cortical circuits. Because of their ubiquitous nature and strong correlation with the "operational modes" of local circuits, gamma oscillations continue to provide important clues about neuronal population dynamics in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuronal oscillations in cortical networks.

            G Buzsáki (2004)
            Clocks tick, bridges and skyscrapers vibrate, neuronal networks oscillate. Are neuronal oscillations an inevitable by-product, similar to bridge vibrations, or an essential part of the brain's design? Mammalian cortical neurons form behavior-dependent oscillating networks of various sizes, which span five orders of magnitude in frequency. These oscillations are phylogenetically preserved, suggesting that they are functionally relevant. Recent findings indicate that network oscillations bias input selection, temporally link neurons into assemblies, and facilitate synaptic plasticity, mechanisms that cooperatively support temporal representation and long-term consolidation of information.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis

              Summary Background Schizophrenia is one of the most common, burdensome, and costly psychiatric disorders in adults worldwide. Antipsychotic drugs are its treatment of choice, but there is controversy about which agent should be used. We aimed to compare and rank antipsychotics by quantifying information from randomised controlled trials. Methods We did a network meta-analysis of placebo-controlled and head-to-head randomised controlled trials and compared 32 antipsychotics. We searched Embase, MEDLINE, PsycINFO, PubMed, BIOSIS, Cochrane Central Register of Controlled Trials (CENTRAL), WHO International Clinical Trials Registry Platform, and ClinicalTrials.gov from database inception to Jan 8, 2019. Two authors independently selected studies and extracted data. We included randomised controlled trials in adults with acute symptoms of schizophrenia or related disorders. We excluded studies in patients with treatment resistance, first episode, predominant negative or depressive symptoms, concomitant medical illnesses, and relapse-prevention studies. Our primary outcome was change in overall symptoms measured with standardised rating scales. We also extracted data for eight efficacy and eight safety outcomes. Differences in the findings of the studies were explored in metaregressions and sensitivity analyses. Effect size measures were standardised mean differences, mean differences, or risk ratios with 95% credible intervals (CrIs). Confidence in the evidence was assessed using CINeMA (Confidence in Network Meta-Analysis). The study protocol is registered with PROSPERO, number CRD42014014919. Findings We identified 54 417 citations and included 402 studies with data for 53 463 participants. Effect size estimates suggested all antipsychotics reduced overall symptoms more than placebo (although not statistically significant for six drugs), with standardised mean differences ranging from −0·89 (95% CrI −1·08 to −0·71) for clozapine to −0·03 (−0·59 to 0·52) for levomepromazine (40 815 participants). Standardised mean differences compared with placebo for reduction of positive symptoms (31 179 participants) varied from −0·69 (95% CrI −0·86 to −0·52) for amisulpride to −0·17 (−0·31 to −0·04) for brexpiprazole, for negative symptoms (32 015 participants) from −0·62 (−0·84 to −0·39; clozapine) to −0·10 (−0·45 to 0·25; flupentixol), for depressive symptoms (19 683 participants) from −0·90 (−1·36 to −0·44; sulpiride) to 0·04 (−0·39 to 0·47; flupentixol). Risk ratios compared with placebo for all-cause discontinuation (42 672 participants) ranged from 0·52 (0·12 to 0·95; clopenthixol) to 1·15 (0·36 to 1·47; pimozide), for sedation (30 770 participants) from 0·92 (0·17 to 2·03; pimozide) to 10·20 (4·72 to 29·41; zuclopenthixol), for use of antiparkinson medication (24 911 participants) from 0·46 (0·19 to 0·88; clozapine) to 6·14 (4·81 to 6·55; pimozide). Mean differences compared to placebo for weight gain (28 317 participants) ranged from −0·16 kg (−0·73 to 0·40; ziprasidone) to 3·21 kg (2·10 to 4·31; zotepine), for prolactin elevation (21 569 participants) from −77·05 ng/mL (−120·23 to −33·54; clozapine) to 48·51 ng/mL (43·52 to 53·51; paliperidone) and for QTc prolongation (15 467 participants) from −2·21 ms (−4·54 to 0·15; lurasidone) to 23·90 ms (20·56 to 27·33; sertindole). Conclusions for the primary outcome did not substantially change after adjusting for possible effect moderators or in sensitivity analyses (eg, when excluding placebo-controlled studies). The confidence in evidence was often low or very low. Interpretation There are some efficacy differences between antipsychotics, but most of them are gradual rather than discrete. Differences in side-effects are more marked. These findings will aid clinicians in balancing risks versus benefits of those drugs available in their countries. They should consider the importance of each outcome, the patients' medical problems, and preferences. Funding German Ministry of Education and Research and National Institute for Health Research
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                25 April 2021
                May 2021
                : 22
                : 9
                : 4467
                Affiliations
                [1 ]Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 01000-000, Brazil; gomesfv@ 123456usp.br
                [2 ]Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
                Author notes
                [* ]Correspondence: GraceAA@ 123456pitt.edu ; Tel.: +1-41-2624-4609
                Author information
                https://orcid.org/0000-0003-1033-1850
                https://orcid.org/0000-0003-1864-5504
                Article
                ijms-22-04467
                10.3390/ijms22094467
                8123139
                33922888
                c7fb4d60-5c9c-4d46-836c-2d8dbdbb6c3e
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 30 March 2021
                : 22 April 2021
                Categories
                Review

                Molecular biology
                dopamine,psychosis,antipsychotics,hippocampus,parvalbumin,glutamate,stress
                Molecular biology
                dopamine, psychosis, antipsychotics, hippocampus, parvalbumin, glutamate, stress

                Comments

                Comment on this article