8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Antioxidant and Anti-Inflammatory Activity of Anthocyanin-Rich Water-Soluble Aronia Dry Extracts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aronia fruits contain many valuable components that are beneficial to human health. However, fruits are characterized by significant variations in chemical composition dependent on the growing conditions and harvesting period. Therefore, there is a need to formulate the extracts with a precisely defined content of health-promoting substances. Aronia dry extracts (ADE) were prepared from frozen pomace applying water extraction, followed by purification and spray-drying. Subsequently, the content of anthocyanins, phenolic acids, and polyphenols was determined. The high-quality chokeberry pomace enabled obtaining extracts with anthocyanin content much higher than the typical market standards. Moreover, it was found that the antioxidant capacity of aronia extracts exceeded those found in other fruit preparations. Antioxidant and free-radical scavenging properties were evaluated using a 2,2′-diphenyl-1-picrylhydrazyl using Electron Paramagnetic Resonance (EPR) spectroscopy (DPPH-EPR) test and Oxygen Radical Absorbance Capacity (ORAC) assay. The inhibition of lipid peroxidation and the level of inflammatory markers have been also investigated using lipopolysaccharide (LPS)-stimulated RAW 264 cells. It was revealed that ADE standardized to 25% of anthocyanins depresses the level of markers of inflammation and lipid peroxidation (Interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and malondialdehyde (MDA)) in in vitro conditions. Additionally, it was confirmed that ADE at all analyzed concentrations did not show any cytotoxic effect as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Antioxidant activity of plant extracts containing phenolic compounds.

          The antioxidative activity of a total of 92 phenolic extracts from edible and nonedible plant materials (berries, fruits, vegetables, herbs, cereals, tree materials, plant sprouts, and seeds) was examined by autoxidation of methyl linoleate. The content of total phenolics in the extracts was determined spectrometrically according to the Folin-Ciocalteu procedure and calculated as gallic acid equivalents (GAE). Among edible plant materials, remarkable high antioxidant activity and high total phenolic content (GAE > 20 mg/g) were found in berries, especially aronia and crowberry. Apple extracts (two varieties) showed also strong antioxidant activity even though the total phenolic contents were low (GAE < 12.1 mg/g). Among nonedible plant materials, high activities were found in tree materials, especially in willow bark, spruce needles, pine bark and cork, and birch phloem, and in some medicinal plants including heather, bog-rosemary, willow herb, and meadowsweet. In addition, potato peel and beetroot peel extracts showed strong antioxidant effects. To utilize these significant sources of natural antioxidants, further characterization of the phenolic composition is needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges.

            Malondialdehyde (MDA), 4-hydroxy-nonenal (HNE) and the F2-isoprostane 15(S)-8-iso-prostaglandin F2α (15(S)-8-iso-PGF2α) are the best investigated products of lipid peroxidation. MDA, HNE and 15(S)-8-iso-PGF2α are produced from polyunsaturated fatty acids (PUFAs) both by chemical reactions and by reactions catalyzed by enzymes. 15(S)-8-iso-PGF2α and other F2-isoprostanes are derived exclusively from arachidonic acid (AA). The number of PUFAs that may contribute to MDA and HNE is much higher. MDA is the prototype of the so called thiobarbituric acid reactive substances (TBARS). MDA, HNE and 15(S)-8-iso-PGF2α are the most frequently measured biomarkers of oxidative stress, namely of lipid peroxidation. In many diseases, higher concentrations of MDA, HNE and 15(S)-8-iso-PGF2α are measured in biological samples as compared to health. Therefore, elevated oxidative stress is generally regarded as a pathological condition. Decreasing the concentration of biomarkers of oxidative stress by changing life style, by nutritional intake of antioxidants or by means of drugs is generally believed to be beneficial to health. Reliable assessment of oxidative stress by measuring MDA, HNE and 15(S)-8-iso-PGF2α in biological fluids is highly challenging for two important reasons: Because of the duality of oxidative stress, i.e., its origin from chemical and enzymatic reactions, and because of pre-analytical and analytical issues. This article focuses on these key issues. It reviews reported analytical methods and their principles for the quantitative measurement of MDA, HNE and 15(S)-8-iso-PGF2α in biological samples including plasma and urine, and critically discusses their biological and biomedical outcome which is rarely crystal clear and free of artefacts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe.

              An improved method of oxygen radical absorbance capacity (ORAC) assay has been developed and validated using fluorescein (3',6'-dihydroxyspiro[isobenzofuran-1[3H],9'[9H]-xanthen]-3-one) as the fluorescent probe. Our results demonstrate that fluorescein (FL) is superior to B-phycoerythrin. The oxidized FL products induced by peroxyl radical were identified by LC/MS, and the reaction mechanism was determined to follow a classic hydrogen atom transfer mechanism. In addition, methodological and mechanistic comparison of ORAC(FL) with other widely used methods was discussed. It is concluded that, unlike other popular methods, the improved ORAC(FL) assay provides a direct measure of hydrophilic chain-breaking antioxidant capacity against peroxyl radical.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                04 September 2020
                September 2020
                : 25
                : 18
                : 4055
                Affiliations
                [1 ]Greenvit Ltd., 27A Wojska Polskiego Avenue, 18-300 Zambrów, Poland; mariusz.banach@ 123456greenvit.pl (M.B.); wojciech.cyplik@ 123456greenvit.pl (W.C.)
                [2 ]Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
                [3 ]AronPharma Ltd., 80-172 Gdańsk, Poland; mlwiloch20@ 123456gmail.com
                [4 ]Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland; katarzyna.zawada@ 123456wum.edu.pl
                [5 ]Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
                Author notes
                [* ]Correspondence: wkujawski@ 123456umk.pl
                Author information
                https://orcid.org/0000-0001-8020-8108
                Article
                molecules-25-04055
                10.3390/molecules25184055
                7570557
                32899830
                c7f5d9a8-976b-40a6-97a3-dd7575f03b1c
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 August 2020
                : 01 September 2020
                Categories
                Article

                aronia melanocarpa,chokeberry,polyphenols,anthocyanins,antioxidant,anti-inflammatory

                Comments

                Comment on this article