7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Epithelial–Mesenchymal Transition Programs and Cancer Stem Cell Phenotypes: Mediators of Breast Cancer Therapy Resistance

      ,
      Molecular Cancer Research
      American Association for Cancer Research (AACR)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epithelial-mesenchymal transition (EMT) programs play essential functions in normal morphogenesis and organogenesis, including that occurring during mammary gland development and glandular regeneration. Historically, EMT programs were believed to reflect a loss of epithelial gene expression signatures and morphologies that give way to those associated with mesenchymal cells and their enhanced migratory and invasive behaviors. However, accumulating evidence now paints EMT programs as representing a spectrum of phenotypic behaviors that also serve to enhance cell survival, immune tolerance, and perhaps even metastatic dormancy. Equally important, the activation of EMT programs in transformed mammary epithelial cells not only enhances their acquisition of invasive and metastatic behaviors, but also expands their generation of chemoresistant breast cancer stem cells (BCSCs). Importantly, the net-effect of these events results in the appearance of recurrent metastatic lesions that remain refractory to the armamentarium of chemotherapies and targeted therapeutic agents deployed against advanced-stage breast cancers. Here we review the molecular and cellular mechanisms that contribute to the pathophysiology of EMT programs in human breast cancers and how these events impact their “stemness” and acquisition of chemoresistant phenotypes.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer

          Epithelial-mesenchymal transition (EMT) is a cellular programme that is known to be crucial for embryogenesis, wound healing and malignant progression. During EMT, cell-cell and cell-extracellular matrix interactions are remodelled, which leads to the detachment of epithelial cells from each other and the underlying basement membrane, and a new transcriptional programme is activated to promote the mesenchymal fate. In the context of neoplasias, EMT confers on cancer cells increased tumour-initiating and metastatic potential and a greater resistance to elimination by several therapeutic regimens. In this Review, we discuss recent findings on the mechanisms and roles of EMT in normal and neoplastic tissues, and the cell-intrinsic signals that sustain expression of this programme. We also highlight how EMT gives rise to a variety of intermediate cell states between the epithelial and the mesenchymal state, which could function as cancer stem cells. In addition, we describe the contributions of the tumour microenvironment in inducing EMT and the effects of EMT on the immunobiology of carcinomas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EMT, CSCs, and drug resistance: the mechanistic link and clinical implications

            According to the cancer stem cell (CSC) paradigm, a minor subpopulation of cancer cells with stem-cell properties predominantly underlies tumour progression, therapy resistance, and disease recurrence. Notably, epithelial-to-mesenchymal transition (EMT) is implicated in these processes, and CSCs typically show markers of EMT-programme activation. Herein, the authors outline our current understanding of the links between the EMT programme, the CSC phenotype, metastasis, and drug resistance, and discuss the potential for therapeutic targeting of these facets of tumour biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer

              Patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer who have disease progression after therapy with multiple HER2-targeted agents have limited treatment options. Tucatinib is an investigational, oral, highly selective inhibitor of the HER2 tyrosine kinase.
                Bookmark

                Author and article information

                Journal
                Molecular Cancer Research
                Mol Cancer Res
                American Association for Cancer Research (AACR)
                1541-7786
                1557-3125
                September 02 2020
                September 2020
                September 2020
                June 05 2020
                : 18
                : 9
                : 1257-1270
                Article
                10.1158/1541-7786.MCR-20-0067
                7483945
                32503922
                c7d2aef0-79f1-4d02-9dda-3048fc0ccfb1
                © 2020
                History

                Comments

                Comment on this article