15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Punicalagin Metabolites Ellagic Acid and Urolithin A Exert Different Strengthening and Anti-Inflammatory Effects on Tight Junction-Mediated Intestinal Barrier Function In Vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Scope: Ellagitannins are polyphenols found in numerous fruits, nuts and seeds. The elagitannin punicalagin and its bioactive metabolites ellagic acid and urolithins are discussed to comprise a high potential for therapeutically or preventive medical application such as in intestinal diseases. The present study characterizes effects of punicalagin, ellagic acid and urolithin A on intestinal barrier function in the absence or presence of the proinflammatory cytokine tumor necrosis factor-α (TNFα).

          Methods and Results: Transepithelial resistance (TER), fluorescein and ion permeability, tight junction protein expression and signalling pathways were examined in Caco-2 and HT-29/B6 intestinal epithelial cell models. Punicalagin had less or no effects on barrier function in both cell models. Ellagic acid was most effective in ileum-like Caco-2 cells, where it increased TER and reduced fluorescein and sodium permeabilities. This was paralleled by myosin light chain kinase two mediated expression down-regulation of claudin-4, -7 and -15. Urolithin A impeded the TNFα-induced barrier loss by inhibition of claudin-1 and -2 protein expression upregulation and claudin-1 delocalization in HT-29/B6.

          Conclusion: Ellagic acid and urolithin A affect intestinal barrier function in distinct ways. Ellagic acid acts preventive by strengthening the barrier per se, while urolithin A protects against inflammation-induced barrier dysfunction.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution.

          Ulcerative colitis (UC) is characterized by a Th2 immune response with inflammation and epithelial barrier dysfunction. So far, Th2 cytokines have not been shown to directly influence epithelial barrier function. Lamina propria mononuclear cells (LPMCs) were stimulated and interleukin (IL)-13 was measured by enzyme-linked immunosorbent assay. Functional IL-13 and IL-4 effects were studied on HT-29/B6 colonic epithelial cells in Ussing chambers and by conductance scanning. Apoptosis was detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays. IL-13/IL-4 receptors were analyzed by reverse-transcription polymerase chain reaction and immunofluorescence. Western blotting combined with immunofluorescence was used to detect tight junction proteins. Furthermore, restitution velocity was measured. Finally, mucosal biopsy specimens from patients with UC were compared with cultured cells for these features. LPMCs from patients with UC produced large amounts of IL-13 (985 +/- 73 pg/mL), much more than from controls or patients with Crohn's disease. IL-13Ralpha1 and IL-4Ralpha receptors were present in HT-29/B6 cells and colonic epithelial cells of control patients and patients with UC. IL-13 had a dose-dependent effect on transepithelial resistance of HT-29/B6 monolayers (reduction to 60% +/- 4%), whereas IL-4 had no effect. This was due to an increased number of apoptotic cells (5.6-fold +/- 0.9-fold) and an increased expression of the pore-forming tight junction protein claudin-2 to 295% +/- 37%, both of which contributed equally. Finally, epithelial restitution velocity decreased from 15.1 +/- 0.6 to 10.6 +/- 0.5 microm/h after treatment with IL-13. Parallel changes were observed in human samples, with an increase in claudin-2 expression to 956% +/- 252%. IL-13 was identified as an important effector cytokine in UC that impairs epithelial barrier function by affecting epithelial apoptosis, tight junctions, and restitution velocity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells.

            Tight junctions seal the paracellular pathway of epithelia but, in leaky tissues, also exhibit specific permeability. In order to characterize the contribution of claudin-2 to barrier and permeability properties of the tight junction in detail, we studied two strains of Madin-Darby canine kidney cells (MDCK-C7 and MDCK-C11) with different tight junctional permeabilities. Monolayers of C7 cells exhibited a high transepithelial resistance (>1 kOhms cm(2)), compared with C11 cells (<100 Ohms cm(2)). Genuine expression of claudin-1 and claudin-2, but not of occludin or claudin-3, was reciprocal to transepithelial resistance. However, confocal microscopy revealed a marked subjunctional localization of claudin-1 in C11 cells, indicating that claudin-1 is not functionally related to the low tight junctional resistance of C11 cells. Strain MDCK-C7, which endogenously does not express junctional claudin-2, was transfected with claudin-2 cDNA. In transfected cells, but not in vector controls, the protein was detected in colocalization with junctional occludin by means of immunohistochemical analyses. Overexpression of claudin-2 in the originally tight epithelium with claudin-2 cDNA resulted in a 5.6-fold higher paracellular conductivity and relative ion permeabilities of Na(+) identical with 1, K(+)=1.02, NMDG(+)=0.79, choline(+)=0.71, Cl(-)=0.12, Br(-)=0.10 (vector control, 1:1.04:0.95:0.94:0.85:0.83). By contrast, fluxes of (radioactively labeled) mannitol and lactulose and (fluorescence labeled) 4 kDa dextran were not changed. Hence, with regular Ringer's, Na(+) conductivity was 0.2 mS cm(-2) in vector controls and 1.7 mS cm(-2) in claudin-2-transfected cells, while Cl(-) conductivity was 0.2 mS cm(-2) in both cells. Thus, presence of junctional claudin-2 causes the formation of cation-selective channels sufficient to transform a 'tight' tight junction into a leaky one.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predicted expansion of the claudin multigene family.

              Claudins (Cldn) are essential membrane proteins of tight junctions (TJs), which form the paracellular permselective barrier. They are produced by a multi-gene family of 24 reported members in mouse and human. Based on a comprehensive search combined with phylogenetic analyses, we identified three novel claudins (claudin-25, -26, and -27). Quantitative RT-PCR revealed that the three novel claudins were expressed in a tissue- and/or developmental stage-dependent manner. Claudins-25 and -26, but not claudin-27, were immunofluorescently localized to TJs when exogenously expressed in cultured MDCK and Eph epithelial cell lines. These findings expand the claudin family to include at least 27 members. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                10 March 2021
                2021
                : 12
                : 610164
                Affiliations
                [ 1 ]Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germasny
                [ 2 ]Institute of Clinical Physiology/Nutritional Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
                Author notes

                Edited by: Giuseppe Esposito, Sapienza University of Rome, Italy

                Reviewed by: Johanna Mahwahwatse Bapela, University of Pretoria, South Africa

                Subhash Chandra Mandal, Government of West Bengal, India

                *Correspondence: Nina A. Hering, nina.hering@ 123456charite.de

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                Article
                610164
                10.3389/fphar.2021.610164
                7987831
                33776763
                c7a14941-1e91-4ef3-85b5-8b67002510d3
                Copyright © 2021 Hering, Luettig, Jebautzke, Schulzke and Rosenthal.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 September 2020
                : 04 February 2021
                Funding
                Funded by: Deutsche Forschungsgemeinschaft 10.13039/501100001659
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                barrier function,ellagic acid,punicalagin,tight junction,urolithin a

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,038

                Cited by11

                Most referenced authors489