6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights into ultra-low affinity lipase-antibody noncovalent complex binding mechanisms

      report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Detection of host cell protein (HCP) impurities is critical to ensuring that recombinant drug products, including monoclonal antibodies (mAbs), are safe. Mechanistic characterization as to how HCPs persist in drug products is important to refining downstream processing. It has been hypothesized that weak lipase–mAb interactions enable HCP lipases to evade drug purification processes. Here, we apply state-of-the-art methods to establish lipase-mAb binding mechanisms. First, the mass spectrometry (MS) approach of fast photochemical oxidation of proteins was used to elucidate putative binding regions. The CH1 domain was identified as a conserved interaction site for IgG1 and IgG4 mAbs against the HCPs phospholipase B-like protein (PLBL2) and lysosomal phospholipase A2 (LPLA2). Rationally designed mutations in the CH1 domain of the IgG4 mAb caused a 3- to 70-fold K D reduction against PLBL2 by surface plasmon resonance (SPR). LPLA2-IgG4 mutant complexes, undetected by SPR and studied using native MS collisional dissociation experiments, also showed significant complex disruption, from 16% to 100%. Native MS and ion mobility (IM) determined complex stoichiometries for four lipase-IgG4 complexes and directly interrogated the enrichment of specific lipase glycoforms. Confirmed with time-course and exoglycosidase experiments, deglycosylated lipases prevented binding, and low-molecular-weight glycoforms promoted binding, to mAbs. This work demonstrates the value of integrated biophysical approaches to characterize micromolar affinity complexes. It is the first in-depth structural report of lipase-mAb binding, finding roles for the CH1 domain and lipase glycosylation in mediating binding. The structural insights gained offer new approaches for the bioengineering of cells or mAbs to reduce HCP impurity levels.

          Abbreviations: CAN, Acetonitrile; AMAC, Ammonium acetate; BFGS, Broyden–Fletcher–Goldfarb–Shanno; CHO, Chinese Hamster Ovary; K D, Dissociation constant; DTT, Dithiothreitol; ELISA, Enzyme-linked immunosorbent assay; FPOP, Fast photochemical oxidation of proteins; FA, Formic acid; F(ab’), Fragment antibodies; HCP, Host cell protein; IgG, Immunoglobulin; IM, Ion mobility; LOD, Lower limit of detection; LPLA2, Lysosomal phospholipase A2; Man, Mannose; MS, Mass spectrometry; MeOH, Methanol; MST, Microscale thermophoresis; mAbs, Monoclonal antibodies; PPT1, Palmitoyl protein thioesterase; ppm, Parts per million; PLBL2, Phospholipase B-like protein; PLD3, Phospholipase D3; PS-20, Polysorbate-20; SP, Sphingomyelin phosphodiesterase; SPR, Surface plasmon resonance; TFA, Trifluoroacetic acid.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles.

          Interpretation of mass spectra is challenging because they report a ratio of two physical quantities, mass and charge, which may each have multiple components that overlap in m/z. Previous approaches to disentangling the two have focused on peak assignment or fitting. However, the former struggle with complex spectra, and the latter are generally computationally intensive and may require substantial manual intervention. We propose a new data analysis approach that employs a Bayesian framework to separate the mass and charge dimensions. On the basis of this approach, we developed UniDec (Universal Deconvolution), software that provides a rapid, robust, and flexible deconvolution of mass spectra and ion mobility-mass spectra with minimal user intervention. Incorporation of the charge-state distribution in the Bayesian prior probabilities provides separation of the m/z spectrum into its physical mass and charge components. We have evaluated our approach using systems of increasing complexity, enabling us to deduce lipid binding to membrane proteins, to probe the dynamics of subunit exchange reactions, and to characterize polydispersity in both protein assemblies and lipoprotein Nanodiscs. The general utility of our approach will greatly facilitate analysis of ion mobility and mass spectra.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            MicroScale Thermophoresis: Interaction analysis and beyond

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Native Mass Spectrometry: What is in the Name?

              Electrospray ionization mass spectrometry (ESI-MS) is nowadays one of the cornerstones of biomolecular mass spectrometry and proteomics. Advances in sample preparation and mass analyzers have enabled researchers to extract much more information from biological samples than just the molecular weight. In particular, relevant for structural biology, noncovalent protein–protein and protein–ligand complexes can now also be analyzed by MS. For these types of analyses, assemblies need to be retained in their native quaternary state in the gas phase. This initial small niche of biomolecular mass spectrometry, nowadays often referred to as “native MS,” has come to maturation over the last two decades, with dozens of laboratories using it to study mostly protein assemblies, but also DNA and RNA-protein assemblies, with the goal to define structure–function relationships. In this perspective, we describe the origins of and (re)define the term native MS, portraying in detail what we meant by “native MS,” when the term was coined and also describing what it does (according to us) not entail. Additionally, we describe a few examples highlighting what native MS is, showing its successes to date while illustrating the wide scope this technology has in solving complex biological questions. Graphical Abstract ᅟ
                Bookmark

                Author and article information

                Journal
                MAbs
                MAbs
                mAbs
                Taylor & Francis
                1942-0862
                1942-0870
                25 October 2022
                2022
                25 October 2022
                : 14
                : 1
                : 2135183
                Affiliations
                [a ]Microchemistry, Proteomics, and Lipidomics, Genentech, Inc; South San Francisco, CA, USA
                [b ]Pharmaceutical Development, Genentech, Inc; South San Francisco, CA, USA
                [c ]Protein Analytical Chemistry, Genentech, Inc; South San Francisco, CA, USA
                [d ]IonDX, Inc; Monterey, CA, USA
                Author notes
                CONTACT Wendy Sandoval Sandoval.wendy@ 123456gene.com Microchemistry, Proteomics, and Lipidomics, Genentech, Inc South San Francisco, CA, USA
                Alavattam Sreedhara Alavattam.sreedhara@ 123456gene.com Pharmaceutical Development, Genentech, Inc; , 1 DNA Way, South San Francisco, CA 94080, USA
                [*]

                These authors contributed equally to this manuscript.

                Author information
                https://orcid.org/0000-0002-4672-0762
                Article
                2135183
                10.1080/19420862.2022.2135183
                9621051
                36284469
                c79cbf97-4234-49ba-b434-1d849e22aead
                © 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 7, Tables: 2, References: 60, Pages: 1
                Categories
                Report
                Report

                Immunology
                protein complex,lipase,polysorbate,antibody,fpop,native mass spectrometry,binding
                Immunology
                protein complex, lipase, polysorbate, antibody, fpop, native mass spectrometry, binding

                Comments

                Comment on this article