12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Walnut polyphenols and the active metabolite urolithin A improve oxidative damage in SH-SY5Y cells by up-regulating PKA/CREB/BDNF signaling

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Walnut polyphenols and urolithin A up-regulate PKA/CREB/BDNF signaling pathway which is required for their neuroprotective effects against oxidative stress and may underlie their health benefits on the brain.

          Abstract

          Accumulating evidence has confirmed the health benefits of walnut diets in maintaining brain function with age. Recent studies have indicated that walnut polyphenols (WP) and their active metabolites urolithins may play an important role in the health benefits of walnut diets. In the present study, we evaluated the protective effect of WP and urolithin A (UroA) on H 2O 2-induced damage in human neuroblastoma (SH-SY5Y) cells, and investigated its mechanisms in the cAMP-response element binding protein (CREB)-mediated signaling pathway, which is tightly involved in neurodegenerative and neurological diseases. The results demonstrated that both WP (50 and 100 μg mL −1) and UroA (5 and 10 μM) treatment significantly reversed the decrease of cell viability, the leakage of extracellular lactate dehydrogenase (LDH), the overload of intracellular calcium and cell apoptosis induced by H 2O 2 treatment. Moreover, WP and UroA treatment also relieved H 2O 2-induced oxidative stress including overproduction of intracellular reactive oxygen species (ROS) and reduced activities of superoxide dismutase (SOD) and catalase (CAT). Additionally, western blot analysis showed that WP and UroA treatment significantly increased the activity of cAMP-dependent protein kinase A (PKA) and the expression of pCREB (Ser133) and its downstream molecule brain-derived neurotrophic factor (BDNF), which were decreased by H 2O 2 treatment. Furthermore, pretreatment with the PKA inhibitor H89 abolished the protective effects of WP and UroA, indicating that up-regulation of the PKA/CREB/BDNF neurotrophic signaling pathway is required for their neuroprotective effects against oxidative stress. The current work provides new perspectives for understanding the beneficial effects of WP and UroA on brain function, which warrants further investigation.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          2021 Alzheimer's disease facts and figures

          (2021)
          This article describes the public health impact of Alzheimer's disease (AD), including incidence and prevalence, mortality and morbidity, use and costs of care, and the overall impact on caregivers and society. The Special Report discusses the challenges of providing equitable health care for people with dementia in the United States. An estimated 6.2 million Americans age 65 and older are living with Alzheimer's dementia today. This number could grow to 13.8 million by 2060 barring the development of medical breakthroughs to prevent, slow or cure AD. Official death certificates recorded 121,499 deaths from AD in 2019, the latest year for which data are available, making Alzheimer's the sixth-leading cause of death in the United States and the fifth-leading cause of death among Americans age 65 and older. Between 2000 and 2019, deaths from stroke, heart disease and HIV decreased, whereas reported deaths from AD increased more than 145%. This trajectory of deaths from AD was likely exacerbated in 2020 by the COVID-19 pandemic. More than 11 million family members and other unpaid caregivers provided an estimated 15.3 billion hours of care to people with Alzheimer's or other dementias in 2020. These figures reflect a decline in the number of caregivers compared with a decade earlier, as well as an increase in the amount of care provided by each remaining caregiver. Unpaid dementia caregiving was valued at $256.7 billion in 2020. Its costs, however, extend to family caregivers' increased risk for emotional distress and negative mental and physical health outcomes - costs that have been aggravated by COVID-19. Average per-person Medicare payments for services to beneficiaries age 65 and older with AD or other dementias are more than three times as great as payments for beneficiaries without these conditions, and Medicaid payments are more than 23 times as great. Total payments in 2021 for health care, long-term care and hospice services for people age 65 and older with dementia are estimated to be $355 billion. Despite years of efforts to make health care more equitable in the United States, racial and ethnic disparities remain - both in terms of health disparities, which involve differences in the burden of illness, and health care disparities, which involve differences in the ability to use health care services. Blacks, Hispanics, Asian Americans and Native Americans continue to have a higher burden of illness and lower access to health care compared with Whites. Such disparities, which have become more apparent during COVID-19, extend to dementia care. Surveys commissioned by the Alzheimer's Association recently shed new light on the role of discrimination in dementia care, the varying levels of trust between racial and ethnic groups in medical research, and the differences between groups in their levels of concern about and awareness of Alzheimer's disease. These findings emphasize the need to increase racial and ethnic diversity in both the dementia care workforce and in Alzheimer's clinical trials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease

            Accumulation of damaged mitochondria is a hallmark of aging and age-related neurodegeneration, including Alzheimer's disease (AD). The molecular mechanisms of impaired mitochondrial homeostasis in AD are being investigated. Here we provide evidence that mitophagy is impaired in the hippocampus of AD patients, in induced pluripotent stem cell-derived human AD neurons, and in animal AD models. In both amyloid-β (Aβ) and tau Caenorhabditis elegans models of AD, mitophagy stimulation (through NAD+ supplementation, urolithin A, and actinonin) reverses memory impairment through PINK-1 (PTEN-induced kinase-1)-, PDR-1 (Parkinson's disease-related-1; parkin)-, or DCT-1 (DAF-16/FOXO-controlled germline-tumor affecting-1)-dependent pathways. Mitophagy diminishes insoluble Aβ1-42 and Aβ1-40 and prevents cognitive impairment in an APP/PS1 mouse model through microglial phagocytosis of extracellular Aβ plaques and suppression of neuroinflammation. Mitophagy enhancement abolishes AD-related tau hyperphosphorylation in human neuronal cells and reverses memory impairment in transgenic tau nematodes and mice. Our findings suggest that impaired removal of defective mitochondria is a pivotal event in AD pathogenesis and that mitophagy represents a potential therapeutic intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Oxidative Stress: A Key Modulator in Neurodegenerative Diseases

              Oxidative stress is proposed as a regulatory element in ageing and various neurological disorders. The excess of oxidants causes a reduction of antioxidants, which in turn produce an oxidation–reduction imbalance in organisms. Paucity of the antioxidant system generates oxidative-stress, characterized by elevated levels of reactive species (oxygen, hydroxyl free radical, and so on). Mitochondria play a key role in ATP supply to cells via oxidative phosphorylation, as well as synthesis of essential biological molecules. Various redox reactions catalyzed by enzymes take place in the oxidative phosphorylation process. An inefficient oxidative phosphorylation may generate reactive oxygen species (ROS), leading to mitochondrial dysfunction. Mitochondrial redox metabolism, phospholipid metabolism, and proteolytic pathways are found to be the major and potential source of free radicals. A lower concentration of ROS is essential for normal cellular signaling, whereas the higher concentration and long-time exposure of ROS cause damage to cellular macromolecules such as DNA, lipids and proteins, ultimately resulting in necrosis and apoptotic cell death. Normal and proper functioning of the central nervous system (CNS) is entirely dependent on the chemical integrity of brain. It is well established that the brain consumes a large amount of oxygen and is highly rich in lipid content, becoming prone to oxidative stress. A high consumption of oxygen leads to excessive production of ROS. Apart from this, the neuronal membranes are found to be rich in polyunsaturated fatty acids, which are highly susceptible to ROS. Various neurodegenerative diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), among others, can be the result of biochemical alteration (due to oxidative stress) in bimolecular components. There is a need to understand the processes and role of oxidative stress in neurodegenerative diseases. This review is an effort towards improving our understanding of the pivotal role played by OS in neurodegenerative disorders.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                FFOUAI
                Food & Function
                Food Funct.
                Royal Society of Chemistry (RSC)
                2042-6496
                2042-650X
                March 20 2023
                2023
                : 14
                : 6
                : 2698-2709
                Affiliations
                [1 ]Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
                [2 ]Rizhao HUAWEI Institute of Comprehensive Health Industries, Rizhao, Shandong, China
                [3 ]Shandong KEEPFIT Biotech. Co., Ltd, Rizhao, Shandong, China
                Article
                10.1039/D2FO03310K
                36847209
                c7739aec-28d0-4bbc-b634-06b8c5bfef92
                © 2023

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article