72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Gene Regulatory Network for Root Epidermis Cell Differentiation in Arabidopsis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 “core” root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network.

          Author Summary

          A current challenge in the field of developmental biology is to define the composition and organization of gene networks that direct the pattern and differentiation of cells, tissues, and organs. In this study, we address this problem using Arabidopsis root epidermis development, a relatively simple model for studies of cell pattern formation and differentiation in plants. We used a tissue-specific cell sorting approach to define more than 1,500 genes whose transcripts differentially accumulate in the developing root epidermis. A series of transcriptome analyses were performed with 17 root epidermal mutants and 2 plant hormone treatments to dissect the regulatory relationships between 208 core genes. In addition, gene expression information from a developmental time series dataset was used to organize genes temporally. The results provide insight into the composition, organization, and logic of a developmental gene regulatory network. Furthermore, this work demonstrates the utility of an integrated analysis in gene regulatory network construction using genetic, genomic, and computational approaches.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Reactive oxygen species produced by NADPH oxidase regulate plant cell growth.

          Cell expansion is a central process in plant morphogenesis, and the elongation of roots and root hairs is essential for uptake of minerals and water from the soil. Ca2+ influx from the extracellular store is required for (and sets the rates of) cell elongation in roots. Arabidopsis thaliana rhd2 mutants are defective in Ca2+ uptake and consequently cell expansion is compromised--rhd2 mutants have short root hairs and stunted roots. To determine the regulation of Ca2+ acquisition in growing root cells we show here that RHD2 is an NADPH oxidase, a protein that transfers electrons from NADPH to an electron acceptor leading to the formation of reactive oxygen species (ROS). We show that ROS accumulate in growing wild-type (WT) root hairs but their levels are markedly decreased in rhd2 mutants. Blocking the activity of the NADPH oxidase with diphenylene iodonium (DPI) inhibits ROS formation and phenocopies Rhd2-. Treatment of rhd2 roots with ROS partly suppresses the mutant phenotype and stimulates the activity of plasma membrane hyperpolarization-activated Ca2+ channels, the predominant root Ca2+ acquisition system. This indicates that NADPH oxidases control development by making ROS that regulate plant cell expansion through the activation of Ca2+ channels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A high-resolution root spatiotemporal map reveals dominant expression patterns.

            Transcriptional programs that regulate development are exquisitely controlled in space and time. Elucidating these programs that underlie development is essential to understanding the acquisition of cell and tissue identity. We present microarray expression profiles of a high-resolution set of developmental time points within a single Arabidopsis root and a comprehensive map of nearly all root cell types. These cell type-specific transcriptional signatures often predict previously unknown cellular functions. A computational pipeline identified dominant expression patterns that demonstrate transcriptional similarity between disparate cell types. Dominant expression patterns along the root's longitudinal axis do not strictly correlate with previously defined developmental zones, and in many cases, we observed expression fluctuation along this axis. Both robust co-regulation of gene expression and potential phasing of gene expression were identified between individual roots. Methods that combine these profiles demonstrate transcriptionally rich and complex programs that define Arabidopsis root development in both space and time.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A gene expression map of the Arabidopsis root.

              A global map of gene expression within an organ can identify genes with coordinated expression in localized domains, thereby relating gene activity to cell fate and tissue specialization. Here, we present localization of expression of more than 22,000 genes in the Arabidopsis root. Gene expression was mapped to 15 different zones of the root that correspond to cell types and tissues at progressive developmental stages. Patterns of gene expression traverse traditional anatomical boundaries and show cassettes of hormonal response. Chromosomal clustering defined some coregulated genes. This expression map correlates groups of genes to specific cell fates and should serve to guide reverse genetics.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2012
                January 2012
                12 January 2012
                : 8
                : 1
                : e1002446
                Affiliations
                [1 ]Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
                [2 ]Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
                [3 ]Department of Biology, Yonsei University, Seoul, Korea
                [4 ]Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, North Carolina, United States of America
                Stanford University, United States of America
                Author notes

                Conceived and designed the experiments: AB MML PB PJW JS. Performed the experiments: AB RMK YW YHK CB XZ YX JYW MML PJW. Analyzed the data: AB RMK YW CB XZ MML PJW JS. Contributed reagents/materials/analysis tools: AB RMK CB JYW PJW. Wrote the paper: AB JS.

                Article
                PGENETICS-D-11-01595
                10.1371/journal.pgen.1002446
                3257299
                22253603
                c7601d47-95ad-4c96-ac82-0ec5885d3ac9
                Bruex et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 July 2011
                : 28 October 2011
                Page count
                Pages: 20
                Categories
                Research Article
                Biology
                Computational Biology
                Microarrays
                Systems Biology
                Developmental Biology
                Cell Differentiation
                Cell Fate Determination
                Molecular Development
                Plant Growth and Development
                Genetics
                Gene Function
                Gene Networks
                Plant Genetics
                Genomics
                Functional Genomics
                Genome Expression Analysis

                Genetics
                Genetics

                Comments

                Comment on this article