80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The leukemia associated ETO nuclear repressor gene is regulated by the GATA-1 transcription factor in erythroid/megakaryocytic cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Eight-Twenty-One ( ETO) nuclear co-repressor gene belongs to the ETO homologue family also containing Myeloid Translocation Gene on chromosome 16 (MTG16) and myeloid translocation Gene-Related protein 1 (MTGR1). By chromosomal translocations ETO and MTG16 become parts of fusion proteins characteristic of morphological variants of acute myeloid leukemia. Normal functions of ETO homologues have as yet not been examined. The goal of this work was to identify structural and functional promoter elements upstream of the coding sequence of the ETO gene in order to explore lineage-specific hematopoietic expression and get hints to function.

          Results

          A putative proximal ETO promoter was identified within 411 bp upstream of the transcription start site. Strong ETO promoter activity was specifically observed upon transfection of a promoter reporter construct into erythroid/megakaryocytic cells, which have endogeneous ETO gene activity. An evolutionary conserved region of 228 bp revealed potential cis-elements involved in transcription of ETO. Disruption of the evolutionary conserved GATA -636 consensus binding site repressed transactivation and disruption of the ETS1 -705 consensus binding site enhanced activity of the ETO promoter. The promoter was stimulated by overexpression of GATA-1 into erythroid/megakaryocytic cells. Electrophoretic mobility shift assay with erythroid/megakaryocytic cells showed specific binding of GATA-1 to the GATA -636 site. Furthermore, results from chromatin immunoprecipitation showed GATA-1 binding in vivo to the conserved region of the ETO promoter containing the -636 site. The results suggest that the GATA -636 site may have a role in activation of the ETO gene activity in cells with erythroid/megakaryocytic potential. Leukemia associated AML1- ETO strongly suppressed an ETO promoter reporter in erythroid/megakaryocytic cells.

          Conclusions

          We demonstrate that the GATA-1 transcription factor binds and transactivates the ETO proximal promoter in an erythroid/megakaryocytic-specific manner. Thus, trans-acting factors that are essential in erythroid/megakaryocytic differentiation govern ETO expression.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream.

          The recent flood of reports using real-time Q-PCR testifies to the transformation of this technology from an experimental tool into the scientific mainstream. Many of the applications of real-time Q-PCR include measuring mRNA expression levels, DNA copy number, transgene copy number and expression analysis, allelic discrimination, and measuring viral titers. The range of applications of real-time Q-PCR is immense and has been fueled in part by the proliferation of lower-cost instrumentation and reagents. Successful application of real-time Q-PCR is not trivial. However, this review will help guide the reader through the variables that can limit the usefulness of this technology. Careful consideration of the assay design, template preparation, and analytical methods are essential for accurate gene quantification.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular biology of the Ets family of transcription factors.

              The Ets family of transcription factors characterized by an evolutionarily-conserved DNA-binding domain regulates expression of a variety of viral and cellular genes by binding to a purine-rich GGAA/T core sequence in cooperation with other transcriptional factors and co-factors. Most Ets family proteins are nuclear targets for activation of Ras-MAP kinase signaling pathway and some of them affect proliferation of cells by regulating the immediate early response genes and other growth-related genes. Some of them also regulate apoptosis-related genes. Several Ets family proteins are preferentially expressed in specific cell lineages and are involved in their development and differentiation by increasing the enhancer or promoter activities of the genes encoding growth factor receptors and integrin families specific for the cell lineages. Many Ets family proteins also modulate gene expression through protein-protein interactions with other cellular partners. Deregulated expression or formation of chimeric fusion proteins of Ets family due to proviral insertion or chromosome translocation is associated with leukemias and specific types of solid tumors. Several Ets family proteins also participate in malignancy of tumor cells including invasion and metastasis by activating the transcription of several protease genes and angiogenesis-related genes.
                Bookmark

                Author and article information

                Journal
                BMC Mol Biol
                BMC Molecular Biology
                BioMed Central
                1471-2199
                2010
                20 May 2010
                : 11
                : 38
                Affiliations
                [1 ]Department of Hematology, C14, BMC, S-221 84 Lund, Sweden
                [2 ]Protista Biotechnology AB, IDEON, Ole Römers väg 12, SE 223 70 Lund, Sweden
                Article
                1471-2199-11-38
                10.1186/1471-2199-11-38
                2882371
                20487545
                c754aa6e-80f5-47e0-860e-d3050bec4aef
                Copyright ©2010 Ajore et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 March 2010
                : 20 May 2010
                Categories
                Research article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article