0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enrichment of retinal ganglion and Müller glia progenitors from retinal organoids derived from human induced pluripotent stem cells - possibilities and current limitations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND

          Retinal organoids serve as excellent human-specific disease models for conditions affecting otherwise inaccessible retinal tissue from patients. They permit the isolation of key cell types affected in various eye diseases including retinal ganglion cells (RGCs) and Müller glia.

          AIM

          To refine human-induced pluripotent stem cells (hiPSCs) differentiated into three-dimensional (3D) retinal organoids to generate sufficient numbers of RGCs and Müller glia progenitors for downstream analyses.

          METHODS

          In this study we described, evaluated, and refined methods with which to generate Müller glia and RGC progenitors, isolated them via magnetic-activated cell sorting, and assessed their lineage stability after prolonged 2D culture. Putative progenitor populations were characterized via quantitative PCR and immunocytochemistry, and the ultrastructural composition of retinal organoid cells was investigated.

          RESULTS

          Our study confirms the feasibility of generating marker-characterized Müller glia and RGC progenitors within retinal organoids. Such retinal organoids can be dissociated and the Müller glia and RGC progenitor-like cells isolated via magnetic-activated cell sorting and propagated as monolayers.

          CONCLUSION

          Enrichment of Müller glia and RGC progenitors from retinal organoids is a feasible method with which to study cell type-specific disease phenotypes and to potentially generate specific retinal populations for cell replacement therapies.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glaucoma.

            Glaucoma is a heterogeneous group of diseases characterised by cupping of the optic nerve head and visual-field damage. It is the most frequent cause of irreversible blindness worldwide. Progression usually stops if the intraocular pressure is lowered by 30-50% from baseline. Its worldwide age-standardised prevalence in the population aged 40 years or older is about 3·5%. Chronic forms of glaucoma are painless and symptomatic visual-field defects occur late. Early detection by ophthalmological examination is mandatory. Risk factors for primary open-angle glaucoma-the most common form of glaucoma-include older age, elevated intraocular pressure, sub-Saharan African ethnic origin, positive family history, and high myopia. Older age, hyperopia, and east Asian ethnic origin are the main risk factors for primary angle-closure glaucoma. Glaucoma is diagnosed using ophthalmoscopy, tonometry, and perimetry. Treatment to lower intraocular pressure is based on topical drugs, laser therapy, and surgical intervention if other therapeutic modalities fail to prevent progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-formation of optic cups and storable stratified neural retina from human ESCs.

              In this report, we demonstrate that an optic cup structure can form by self-organization in human ESC culture. The human ESC-derived optic cup is much larger than the mouse ESC-derived one, presumably reflecting the species differences. The neural retina in human ESC culture is thick and spontaneously curves in an apically convex manner, which is not seen in mouse ESC culture. In addition, human ESC-derived neural retina grows into multilayered tissue containing both rods and cones, whereas cone differentiation is rare in mouse ESC culture. The accumulation of photoreceptors in human ESC culture can be greatly accelerated by Notch inhibition. In addition, we show that an optimized vitrification method enables en bloc cryopreservation of stratified neural retina of human origin. This storage method at an intermediate step during the time-consuming differentiation process provides a versatile solution for quality control in large-scale preparation of clinical-grade retinal tissues. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Stem Cells
                WJSC
                World Journal of Stem Cells
                Baishideng Publishing Group Inc
                1948-0210
                26 October 2020
                26 October 2020
                : 12
                : 10
                : 1171-1183
                Affiliations
                Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark. kkf@ 123456sund.ku.dk
                Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
                Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
                Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
                Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
                Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
                Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
                Save Sight Institute, South Block, Sydney Eye Hospital, Sydney 2000, Australia
                Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
                Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
                Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup 2600, Denmark
                Author notes

                Author contributions: Freude KK and Kolko M designed and coordinated the study; Saruhanian S, McCauley A, Paterson C, Odette M, Oostenink A, Freude KK, and Hyttel P performed the experiments, acquired and analyzed the data; Saruhanian S, McCauley A, Paterson C, Odette M, Hyttel P, Haukedal H, and Freude KK interpreted the data; Gillies M provided intellectual input into the experimental design; Freude KK, Haukedal H and Kolko M wrote the manuscript; all authors approved the final version of the manuscript.

                Supported by Innovation Fund Denmark, No. 4108-00008B; The Bagenkop Nielsens Ø jen-Fond, No. 115227; Hø rslev-Fonden, No. 116967; Beckett Fonden, No. 116936; and Velux Foundation, No. 1179261001/2.

                Corresponding author: Kristine Karla Freude, BSc, DPhil, MSc, PhD, Associate Professor, Department of Veterinary and Animal Sciences, Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg 1870, Denmark. kkf@ 123456sund.ku.dk

                Article
                jWJSC.v12.i10.pg1171
                10.4252/wjsc.v12.i10.1171
                7596448
                c74cc692-749b-400c-901d-bcbcf54e64ac
                ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

                History
                : 11 June 2020
                : 3 July 2020
                : 16 August 2020
                Categories
                Basic Study

                human induced pluripotent stem cells,retinal organoids,retinal ganglion cells,müller glia,progenitors,cell-type enrichment

                Comments

                Comment on this article