6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The SARS-CoV-2 nucleoprotein associates with anionic lipid membranes

      Preprint
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a lipid-enveloped virus that acquires its lipid bilayer from the host cell it infects. SARS-CoV-2 can spread from cell to cell or from patient to patient by undergoing assembly and budding to form new virions. The assembly and budding of SARS-CoV-2 is mediated by several structural proteins known as envelope (E), membrane (M), nucleoprotein (N) and spike (S), which can form virus-like particles (VLPs) when co-expressed in mammalian cells. Assembly and budding of SARS-CoV-2 from the host ER-Golgi intermediate compartment is a critical step in the virus acquiring its lipid bilayer. To date, little information is available on how SARS-CoV-2 assembles and forms new viral particles from host membranes. In this study, we find the N protein can strongly associate with anionic lipids including phosphoinositides and phosphatidylserine. Moreover, lipid binding is shown to occur in the N protein C-terminal domain, which is supported by extensive in silico analysis. Anionic lipid binding occurs for both the free and N oligomeric forms suggesting N can associate with membranes in the nucleocapsid form. Herein we present a lipid-dependent model based on in vitro, cellular and in silico data for the recruitment of N to M assembly sites in the lifecycle of SARS-CoV-2.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems

                Bookmark

                Author and article information

                Journal
                bioRxiv
                BIORXIV
                bioRxiv
                Cold Spring Harbor Laboratory
                15 September 2023
                : 2023.09.15.557899
                Affiliations
                [1 ]Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Frank Institute, The University of Chicago, Chicago, IL, USA
                [2 ]Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
                Author notes
                [#]

                These authors contributed equally to the manuscript

                [* ]To whom correspondence should be addressed: rstaheli@ 123456purdue.edu or gavoth@ 123456uchicago.edu
                Article
                10.1101/2023.09.15.557899
                10516002
                37745364
                c70b3982-7e4c-40c2-a5b7-d78ddfdf99aa

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.

                History
                Categories
                Article

                Comments

                Comment on this article