11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle.

      The Journal of Biological Chemistry
      AMP-Activated Protein Kinases, genetics, metabolism, Amino Acid Substitution, Animals, DNA-Binding Proteins, Glycolysis, physiology, High Mobility Group Proteins, Mice, Mice, Knockout, Mitochondria, Mitochondrial Proteins, biosynthesis, Muscle Proteins, Muscle, Skeletal, enzymology, Mutation, Missense, NF-E2-Related Factor 2, Nuclear Respiratory Factor 1, Trans-Activators, Transcription Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          AMP-activated protein kinase (AMPK) is a heterotrimeric complex, composed of a catalytic subunit (alpha) and two regulatory subunits (beta and gamma), that works as a cellular energy sensor. The existence of multiple heterotrimeric complexes provides a molecular basis for the multiple roles of this highly conserved signaling system. The AMPK gamma3 subunit is predominantly expressed in skeletal muscle, mostly in type II glycolytic fiber types. We determined whether the AMPK gamma3 subunit has a role in signaling pathways that mediate mitochondrial biogenesis in skeletal muscle. We provide evidence that overexpression or ablation of the AMPK gamma3 subunit does not appear to play a critical role in defining mitochondrial content in resting skeletal muscle. However, overexpression of a mutant form (R225Q) of the AMPK gamma3 subunit (Tg-AMPKgamma3(225Q)) increases mitochondrial biogenesis in glycolytic skeletal muscle. These adaptations are associated with an increase in expression of the co-activator PGC-1alpha and several transcription factors that regulate mitochondrial biogenesis, including NRF-1, NRF-2, and TFAM. Succinate dehydrogenase staining, a marker of the oxidative profile of individual fibers, was also increased in transversal skeletal muscle sections of white gastrocnemius muscle from Tg-AMPKgamma3(225Q) mice, independent of changes in fiber type composition. In conclusion, a single nucleotide mutation (R225Q) in the AMPK gamma3 subunit is associated with mitochondrial biogenesis in glycolytic skeletal muscle, concomitant with increased expression of the co-activator PGC-1alpha and several transcription factors that regulate mitochondrial proteins, without altering fiber type composition.

          Related collections

          Author and article information

          Comments

          Comment on this article