13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Naturally occurring bioactive compounds from four repellent essential oils againstBemisia tabaciwhiteflies : Bioactive natural repellent compounds against whiteflies

      , , , ,
      Pest Management Science
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In tropical countries, netting is an effective sustainable tool for protecting horticultural crops against Lepidoptera, although not against small pests such as Bemisia tabaci, while smaller mesh netting can be used in temperate regions. A solution is to combine a net with a repellent. Previously we identified repellent essential oils: lemongrass (Cymbopogon citratus), cinnamon (Cinnamomum zeylanicum), cumin (Cuminum cyminum) and citronella (Cymbopogon winternarius). The present study was designed to identify the active compounds of these essential oils, characterise their biological activity and examine their potential for coating nets. We investigated the efficiency and toxicity of nets dipped in different solutions. We then studied the repellent effect with an olfactometer and the irritant effect by videotracking.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world.

          Botanical insecticides have long been touted as attractive alternatives to synthetic chemical insecticides for pest management because botanicals reputedly pose little threat to the environment or to human health. The body of scientific literature documenting bioactivity of plant derivatives to arthropod pests continues to expand, yet only a handful of botanicals are currently used in agriculture in the industrialized world, and there are few prospects for commercial development of new botanical products. Pyrethrum and neem are well established commercially, pesticides based on plant essential oils have recently entered the marketplace, and the use of rotenone appears to be waning. A number of plant substances have been considered for use as insect antifeedants or repellents, but apart from some natural mosquito repellents, little commercial success has ensued for plant substances that modify arthropod behavior. Several factors appear to limit the success of botanicals, most notably regulatory barriers and the availability of competing products (newer synthetics, fermentation products, microbials) that are cost-effective and relatively safe compared with their predecessors. In the context of agricultural pest management, botanical insecticides are best suited for use in organic food production in industrialized countries but can play a much greater role in the production and postharvest protection of food in developing countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular architecture of smell and taste in Drosophila.

            The chemical senses-smell and taste-allow animals to evaluate and distinguish valuable food resources from dangerous substances in the environment. The central mechanisms by which the brain recognizes and discriminates attractive and repulsive odorants and tastants, and makes behavioral decisions accordingly, are not well understood in any organism. Recent molecular and neuroanatomical advances in Drosophila have produced a nearly complete picture of the peripheral neuroanatomy and function of smell and taste in this insect. Neurophysiological experiments have begun to provide insight into the mechanisms by which these animals process chemosensory cues. Given the considerable anatomical and functional homology in smell and taste pathways in all higher animals, experimental approaches in Drosophila will likely provide broad insights into the problem of sensory coding. Here we provide a critical review of the recent literature in this field and comment on likely future directions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repellent activity of essential oils: a review.

              Currently, the use of synthetic chemicals to control insects and arthropods raises several concerns related to environment and human health. An alternative is to use natural products that possess good efficacy and are environmentally friendly. Among those chemicals, essential oils from plants belonging to several species have been extensively tested to assess their repellent properties as a valuable natural resource. The essential oils whose repellent activities have been demonstrated, as well as the importance of the synergistic effects among their components are the main focus of this review. Essential oils are volatile mixtures of hydrocarbons with a diversity of functional groups, and their repellent activity has been linked to the presence of monoterpenes and sesquiterpenes. However, in some cases, these chemicals can work synergistically, improving their effectiveness. In addition, the use of other natural products in the mixture, such as vanillin, could increase the protection time, potentiating the repellent effect of some essential oils. Among the plant families with promising essential oils used as repellents, Cymbopogon spp., Ocimum spp. and Eucalyptus spp. are the most cited. Individual compounds present in these mixtures with high repellent activity include alpha-pinene, limonene, citronellol, citronellal, camphor and thymol. Finally, although from an economical point of view synthetic chemicals are still more frequently used as repellents than essential oils, these natural products have the potential to provide efficient, and safer repellents for humans and the environment.
                Bookmark

                Author and article information

                Journal
                Pest Management Science
                Pest. Manag. Sci.
                Wiley-Blackwell
                1526498X
                January 2016
                January 2016
                : 72
                : 1
                : 179-189
                Article
                10.1002/ps.3987
                25641934
                c6e59ab6-b929-46d9-9b67-af76c9c47b9e
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article