8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overexpression of miR-200a-3p promoted inflammation in sepsis-induced brain injury through ROS-induced NLRP3

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sepsis, a systemic inflammatory response syndrome induced by infection, is a common complication of trauma, burns, postoperative infection and critical disease, and is characterized by an acute onset and high fatality rate. The aim of the present study was to explore the possible molecular mechanisms of microRNA-200a-3p (miRNA-200a-3p) on inflammation during sepsis. Reverse transcription-quantitative PCR and gene microarray were used to measure the expression of miRNA-200a-3p. Tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-18 were searched by ELISA. The related proteins expression was measured using western blotting. The expression of miRNA-200a-3p was markedly higher in the sepsis model when compared with the normal control group. In addition, the expression of miRNA-200a-3p was upregulated by the miRNA-200a-3p plasmid in human brain microvascular endothelial cells treated with lipopolysaccharide, which further induced inflammation via the induction of NLR family pyrin domain containing 3 (NLRP3) and suppression of Kelch like ECH associated protein (Keap)-1/nuclear factor erythroid 2 like 2 (Nrf2)/heme oxygenase (HO)-1. The inhibition of Keap1/Nrf2/HO-1 attenuated the effects of anti-miRNA-200a-3p on inflammation. However, the inhibition of NLRP3 attenuated the effects of miRNA-200a-3p on inflammation. In conclusion, to the best of our knowledge, the results of the present study demonstrated for the first time that overexpression of miRNA-200a-3p promoted inflammation in sepsis-induced brain injury through reactive oxygen species-induced NLRP3.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/ p21WAF1/CIP1 and p27KIP1 pathway

          Resveratrol (RES) is the most effective natural products used for the treatment of a variety of cancers. In this study, we tested the effect of RES in enhancing the efficacy of docetaxel (DTX) treatment in prostate cancer (PCa) cells. The C4-2B and DU-145 cell lines were treated with RES, DTX and combination followed by evaluating the apoptosis and cell cycle progression. The combined drug treatment up-regulates the pro-apoptotic genes (BAX, BID, and BAK), cleaved PARP and down regulates the anti-apoptotic genes (MCL-1, BCL-2, BCL-XL) promoting apoptosis. In C4-2B cells the combination up regulated the expression of p53, and cell cycle inhibitors (p21WAF1/CIP1, p27KIP), which, in turn, inhibited the expression of CDK4, cyclin D1, cyclin E1 and induced hypo-phosphorylation of Rb thus blocking the transition of cells in the G0/G1 to S phase. In contrast, the synergistic effect was not profound in DU145 due to its lesser sensitivity to DTX. The suppression of cyclin B1 and CDK1 expression in both cell lines inhibits the further progression of cells in G2/M phase. The current study demonstrates that combination treatment blocks the cell cycle arrest by modulation of key regulators and promotes apoptosis via p53 dependent and independent mechanism in PCa.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            miR-141 Regulates colonic leukocytic trafficking by targeting CXCL12β during murine colitis and human Crohn's disease.

            Emerging evidence suggests that microRNA (miRNA)-mediated gene regulation influences a variety of autoimmune disease processes, including Crohn's disease (CD), but the biological function of miRNAs in CD remains unclear. We examine miRNA level in colon tissues and study the potential functions of miRNAs that regulate pathological genes during the inflammation process. miRNA levels were assayed in the inflamed colon of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced and IL-10 knockout (KO) chronic colitis mice and CD patients by microarray or qRT-PCR. The influence of differently expressed miR-141 on its putative target genes, CXCL12β, and leukocyte migration was investigated in colonic epithelia cells, colitis models and CD patients. The role of miR-141 was further studied in the experimental colitis mice by intracolonic administration of miR-141 precursors or inhibitors. An inverse correlation between miR-141 and CXCL12β/total-CXCL12 was observed predominantly in the epithelial cells of the inflamed colons from colitic mice and CD patients. Further study demonstrated that miR-141 directly regulated CXCL12β expression and CXCL12β-mediated leukocyte migration. Upregulation or downregulation of miR-141 in the TNBS-induced or IL-10 KO colitic colon regulated leukocyte infiltration and alleviated or aggravated experimental colitis, respectively. Additionally, colonic overexpression of CXCL12β abolished the therapeutic effect of miR-141 in TNBS-induced colitis. This study showed that the pathway of miR-141 targeting CXCL12β is a possible mechanism underlying inflammatory cell trafficking during colonic inflammation process. Inhibiting colonic CXCL12β expression and blocking colonic immune cell recruitment by using miRNA precursors represents a promising approach that may be valuable for CD treatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1-Nrf2, Tgfβ1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice.

              Aberrant regulation in oxidative stress, fibrogenesis, and the epithelial-mesenchymal transition (EMT) in renal cells under hyperglycemic conditions contributes significantly to the onset and progression of diabetic nephropathy. The mechanisms underlying these hyperglycemia-induced dysregulations, however, have not been clearly elucidated. Herein, we report that aldose reductase is capable of regulating the expression of miR-200a-3p/141-3p negatively in renal mesangial cells. MiR-200a-3p/141-3p, in turn, act to target Keap1, Tgfβ2, fibronectin, and Zeb2 directly and regulate Tgfβ1 and Nrf2 indirectly under high-glucose conditions, resulting in profound dysregulations in Keap1-Nrf2, Tgfβ1/2, and Zeb1/2 signaling. In vivo in streptozotocin-induced diabetic mice, we found that aldose reductase deficiency caused significant elevations in miR-200a-3p/141-3p in the renal cortex, which were accompanied by a significant downregulation of Keap1, Tgfβ1/2, and fibronectin but significant upregulation of Nrf2. Moreover, in vivo administration of inhibitors of miR-200a-3p in diabetic animals significantly exacerbated cortical and glomerular fibrogenesis and increased urinary albumin excretion, tightly linking dysregulated miR-200a-3p with the development of diabetic nephropathy. Collectively, our results reveal a novel mechanism whereby hyperglycemia induces aldose reductase to regulate renal expression of miR-200a-3p/141-3p to coordinately control hyperglycemia-induced renal oxidative stress, fibrogenesis, and the EMT. Our novel findings also suggest that inhibition of aldose reductase and in vivo renal cortical restoration of miR-200a-3p/141-3p or their combination are very promising avenues for the development of therapeutic strategies or drugs against diabetic nephropathy. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Mol Med
                Int. J. Mol. Med
                IJMM
                International Journal of Molecular Medicine
                D.A. Spandidos
                1107-3756
                1791-244X
                November 2019
                30 August 2019
                30 August 2019
                : 44
                : 5
                : 1811-1823
                Affiliations
                [1 ]Departments of ICU and
                [2 ]Departments of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, P.R. China
                Author notes
                Correspondence to: Professor Zhanxiang Wang, Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, Fujian 361000, P.R. China, E-mail: wangzxzx2222@ 123456163.com
                Article
                ijmm-44-05-1811
                10.3892/ijmm.2019.4326
                6777670
                31485604
                c6dabecc-468b-43bd-9e75-fd8f5e348d85
                Copyright: © Yu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 28 January 2019
                : 03 May 2019
                Categories
                Articles

                microrna-200a-3p,nlr family pyrin domain containing 3,inflammation,reactive oxygen species,sepsis,kelch like ech associated protein-1,nuclear factor erythroid 2 like 2,heme oxygenase-1

                Comments

                Comment on this article